TY - JOUR
T1 - Domain Theoretic Second-Order Euler's Method for Solving Initial Value Problems
AU - Edalat, Abbas
AU - Farjudian, Amin
AU - Mohammadian, Mina
AU - Pattinson, Dirk
N1 - Publisher Copyright:
© 2020 The Author(s)
PY - 2020/10/1
Y1 - 2020/10/1
N2 - A domain-theoretic method for solving initial value problems (IVPs) is presented, together with proofs of soundness, completeness, and some results on the algebraic complexity of the method. While the common fixed-precision interval arithmetic methods are restricted by the precision of the underlying machine architecture, domain-theoretic methods may be complete, i.e., the result may be obtained to any degree of accuracy. Furthermore, unlike methods based on interval arithmetic which require access to the syntactic representation of the vector field, domain-theoretic methods only deal with the semantics of the field, in the sense that the field is assumed to be given via finitely-representable approximations, to within any required accuracy. In contrast to the domain-theoretic first-order Euler method, the second-order method uses the local Lipschitz properties of the field. This is achieved by using a domain for Lipschitz functions, whose elements are consistent pairs that provide approximations of the field and its local Lipschitz properties. In the special case where the field is differentiable, the local Lipschitz properties are exactly the local differential properties of the field. In solving IVPs, Lipschitz continuity of the field is a common assumption, as a sufficient condition for uniqueness of the solution. While the validated methods for solving IVPs commonly impose further restrictions on the vector field, the second-order Euler method requires no further condition. In this sense, the method may be seen as the most general of its kind. To avoid complicated notations and lengthy arguments, the results of the paper are stated for the second-order Euler method. Nonetheless, the framework, and the results, may be extended to any higher-order Euler method, in a straightforward way.
AB - A domain-theoretic method for solving initial value problems (IVPs) is presented, together with proofs of soundness, completeness, and some results on the algebraic complexity of the method. While the common fixed-precision interval arithmetic methods are restricted by the precision of the underlying machine architecture, domain-theoretic methods may be complete, i.e., the result may be obtained to any degree of accuracy. Furthermore, unlike methods based on interval arithmetic which require access to the syntactic representation of the vector field, domain-theoretic methods only deal with the semantics of the field, in the sense that the field is assumed to be given via finitely-representable approximations, to within any required accuracy. In contrast to the domain-theoretic first-order Euler method, the second-order method uses the local Lipschitz properties of the field. This is achieved by using a domain for Lipschitz functions, whose elements are consistent pairs that provide approximations of the field and its local Lipschitz properties. In the special case where the field is differentiable, the local Lipschitz properties are exactly the local differential properties of the field. In solving IVPs, Lipschitz continuity of the field is a common assumption, as a sufficient condition for uniqueness of the solution. While the validated methods for solving IVPs commonly impose further restrictions on the vector field, the second-order Euler method requires no further condition. In this sense, the method may be seen as the most general of its kind. To avoid complicated notations and lengthy arguments, the results of the paper are stated for the second-order Euler method. Nonetheless, the framework, and the results, may be extended to any higher-order Euler method, in a straightforward way.
KW - algebraic complexity
KW - domain of Lipschitz functions
KW - domain theory
KW - initial value problem
KW - interval arithmetic
UR - http://www.scopus.com/inward/record.url?scp=85114442577&partnerID=8YFLogxK
U2 - 10.1016/j.entcs.2020.09.006
DO - 10.1016/j.entcs.2020.09.006
M3 - Article
SN - 1571-0661
VL - 352
SP - 105
EP - 128
JO - Electronic Notes in Theoretical Computer Science
JF - Electronic Notes in Theoretical Computer Science
ER -