TY - JOUR
T1 - Domain Walls in Topological Phases and the Brauer–Picard Ring for Vec (Z/ pZ)
AU - Barter, Daniel
AU - Bridgeman, Jacob C.
AU - Jones, Corey
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - We show how to calculate the relative tensor product of bimodule categories (not necessarily invertible) using ladder string diagrams. As an illustrative example, we compute the Brauer–Picard ring for the fusion category Vec(Z/ pZ) . Moreover, we provide a physical interpretation of all indecomposable bimodule categories in terms of domain walls in the associated topological phase. We show how this interpretation can be used to compute the Brauer–Picard ring from a physical perspective.
AB - We show how to calculate the relative tensor product of bimodule categories (not necessarily invertible) using ladder string diagrams. As an illustrative example, we compute the Brauer–Picard ring for the fusion category Vec(Z/ pZ) . Moreover, we provide a physical interpretation of all indecomposable bimodule categories in terms of domain walls in the associated topological phase. We show how this interpretation can be used to compute the Brauer–Picard ring from a physical perspective.
UR - http://www.scopus.com/inward/record.url?scp=85060708309&partnerID=8YFLogxK
U2 - 10.1007/s00220-019-03338-2
DO - 10.1007/s00220-019-03338-2
M3 - Article
SN - 0010-3616
VL - 369
SP - 1167
EP - 1185
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
IS - 3
ER -