Abstract
Riparian vegetation is exposed to stress from inundation and hydraulic disturbance, and is often rich in native and alien plant species. We describe 35 traits that enable plants to cope with riparian conditions. These include traits for tolerating or avoiding anoxia and enabling underwater photosynthesis, traits that confer resistance and resilience to hydraulic disturbance, and attributes that facilitate dispersal, such as floating propagules. This diversity of life-history strategies illustrates that there are many ways of sustaining life in riparian zones, which helps to explain high riparian biodiversity. Using community assembly theory, we examine how adaptations to inundation, disturbance and dispersal shape plant community composition along key environmental gradients, and how human actions have modified communities. Dispersal-related processes seem to explain many patterns, highlighting the influence of regional processes on local species assemblages. Using alien plant invasions like an (uncontrolled) experiment in community assembly, we use an Australian and a global dataset to examine possible causes of high degrees of riparian invasion. We found that high proportions of alien species in the regional species pools have invaded riparian zones, despite not being riparian specialists, and that riparian invaders disperse in more ways, including by water and humans, than species invading other ecosystems.
Original language | English |
---|---|
Pages (from-to) | 19-36 |
Number of pages | 18 |
Journal | New Phytologist |
Volume | 204 |
Issue number | 1 |
DOIs | |
Publication status | Published - Oct 2014 |