Dual-Function Electron-Conductive, Hole-Blocking Titanium Nitride Contacts for Efficient Silicon Solar Cells

Xinbo Yang*, Wenzhu Liu, Michele De Bastiani, Thomas Allen, Jingxuan Kang, Hang Xu, Erkan Aydin, Lujia Xu, Qunyu Bi, Hoang Dang, Esra AlHabshi, Konstantinos Kotsovos, Ahmed AlSaggaf, Issam Gereige, Yimao Wan, Jun Peng, Christian Samundsett, Andres Cuevas, Stefaan De Wolf

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    105 Citations (Scopus)

    Abstract

    High-performance passivating contact is a prerequisite for high-efficiency crystalline silicon (c-Si) solar cells. In this work, an electron-conductive, hole-blocking contact based on titanium nitride (TiN) deposited by reactive magnetron sputtering is presented. Quasi-metallic TiN combined with an ultrathin SiO2 passivation layer (SiO2/TiN) is demonstrated to be an effective electron-selective contact on c-Si, featuring a low-contact resistivity of 16.4 mΩ.cm2 and a tolerable recombination current parameter of ∼500 fA/cm2. By implementing the dual-function SiO2/TiN contact, which acts simultaneously as a surface passivating layer and metal electrode, an efficiency of 20% is achieved by an n-type c-Si solar cell with a simple structure. This work not only demonstrates a way to develop efficient n-type c-Si solar cells with dual-function metal nitride contacts at a low cost but also expands the pool of available carrier transport materials, from metal oxides to metal nitrides, for photovoltaic devices. N-type silicon wafers exhibit superior electrical properties compared to their p-type counterparts, such as higher minority carrier lifetime and absence of light-induced degradation, resulting in a higher efficiency potential and increased reliability of photovoltaic devices. However, most of the commonly used metals (e.g., Al and Ag) cannot form an ohmic contact on the lightly doped n-type silicon wafers, retarding the development of an n-type analog to the Al-back-surface-field p-type solar cell. Herein, we present a dual-function, electron-conductive contact based on titanium nitride (TiN) for n-type silicon solar cells. By implementing the SiO2/TiN contact, which acts simultaneously as a surface passivating layer and metal electrode, an efficiency of 20% was achieved by an n-type silicon solar cell with a simplified fabrication flow. This work demonstrates the path forward to develop efficient n-type silicon solar cells with dual-function metal nitride contacts at a low cost. Yang and co-workers reported a dual-function, low-cost, high-performance titanium-nitride-based passivating contact for silicon solar cells. By the implementation of electron-conductive titanium nitride contact, which acts simultaneously as a surface passivating layer and metal electrode, a silicon solar cell with an efficiency of 20% is achieved using a simplified fabrication process. This work also expands the pool of available electron transport materials, from metal oxides to metal nitrides, for photovoltaic devices.

    Original languageEnglish
    Pages (from-to)1314-1327
    Number of pages14
    JournalJoule
    Volume3
    Issue number5
    DOIs
    Publication statusPublished - 15 May 2019

    Fingerprint

    Dive into the research topics of 'Dual-Function Electron-Conductive, Hole-Blocking Titanium Nitride Contacts for Efficient Silicon Solar Cells'. Together they form a unique fingerprint.

    Cite this