TY - JOUR
T1 - Dual-path Convolutional Image-Text Embeddings with Instance Loss
AU - Zheng, Zhedong
AU - Zheng, Liang
AU - Garrett, Michael
AU - Yang, Yi
AU - Xu, Mingliang
AU - Shen, Yi Dong
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/5/19
Y1 - 2020/5/19
N2 - Matching images and sentences demands a fine understanding of both modalities. In this article, we propose a new system to discriminatively embed the image and text to a shared visual-textual space. In this field, most existing works apply the ranking loss to pull the positive image/text pairs close and push the negative pairs apart from each other. However, directly deploying the ranking loss on heterogeneous features (i.e., text and image features) is less effective, because it is hard to find appropriate triplets at the beginning. So the naive way of using the ranking loss may compromise the network from learning inter-modal relationship. To address this problem, we propose the instance loss, which explicitly considers the intra-modal data distribution. It is based on an unsupervised assumption that each image/text group can be viewed as a class. So the network can learn the fine granularity from every image/text group. The experiment shows that the instance loss offers better weight initialization for the ranking loss, so that more discriminative embeddings can be learned. Besides, existing works usually apply the off-the-shelf features, i.e., word2vec and fixed visual feature. So in a minor contribution, this article constructs an end-to-end dual-path convolutional network to learn the image and text representations. End-to-end learning allows the system to directly learn from the data and fully utilize the supervision. On two generic retrieval datasets (Flickr30k and MSCOCO), experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods. Moreover, in language-based person retrieval, we improve the state of the art by a large margin. The code has been made publicly available.
AB - Matching images and sentences demands a fine understanding of both modalities. In this article, we propose a new system to discriminatively embed the image and text to a shared visual-textual space. In this field, most existing works apply the ranking loss to pull the positive image/text pairs close and push the negative pairs apart from each other. However, directly deploying the ranking loss on heterogeneous features (i.e., text and image features) is less effective, because it is hard to find appropriate triplets at the beginning. So the naive way of using the ranking loss may compromise the network from learning inter-modal relationship. To address this problem, we propose the instance loss, which explicitly considers the intra-modal data distribution. It is based on an unsupervised assumption that each image/text group can be viewed as a class. So the network can learn the fine granularity from every image/text group. The experiment shows that the instance loss offers better weight initialization for the ranking loss, so that more discriminative embeddings can be learned. Besides, existing works usually apply the off-the-shelf features, i.e., word2vec and fixed visual feature. So in a minor contribution, this article constructs an end-to-end dual-path convolutional network to learn the image and text representations. End-to-end learning allows the system to directly learn from the data and fully utilize the supervision. On two generic retrieval datasets (Flickr30k and MSCOCO), experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods. Moreover, in language-based person retrieval, we improve the state of the art by a large margin. The code has been made publicly available.
KW - Image-sentence retrieval
KW - convolutional neural networks
KW - cross-modal retrieval
KW - language-based person search
UR - http://www.scopus.com/inward/record.url?scp=85086077560&partnerID=8YFLogxK
U2 - 10.1145/3383184
DO - 10.1145/3383184
M3 - Article
SN - 1551-6857
VL - 16
JO - ACM Transactions on Multimedia Computing, Communications and Applications
JF - ACM Transactions on Multimedia Computing, Communications and Applications
IS - 2
M1 - 51
ER -