Dynamic Label Graph Matching for Unsupervised Video Re-identification

Mang Ye, Andy J. Ma, Liang Zheng, Jiawei Li, Pong C. Yuen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

167 Citations (Scopus)

Abstract

Label estimation is an important component in an unsupervised person re-identification (re-ID) system. This paper focuses on cross-camera label estimation, which can be subsequently used in feature learning to learn robust re-ID models. Specifically, we propose to construct a graph for samples in each camera, and then graph matching scheme is introduced for cross-camera labeling association. While labels directly output from existing graph matching methods may be noisy and inaccurate due to significant cross-camera variations, this paper propose a dynamic graph matching (DGM) method. DGM iteratively updates the image graph and the label estimation process by learning a better feature space with intermediate estimated labels. DGM is advantageous in two aspects: 1) the accuracy of estimated labels is improved significantly with the iterations; 2) DGM is robust to noisy initial training data. Extensive experiments conducted on three benchmarks including the large-scale MARS dataset show that DGM yields competitive performance to fully supervised baselines, and outperforms competing unsupervised learning methods.1

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5152-5160
Number of pages9
ISBN (Electronic)9781538610329
DOIs
Publication statusPublished - 22 Dec 2017
Externally publishedYes
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: 22 Oct 201729 Oct 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Conference

Conference16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period22/10/1729/10/17

Fingerprint

Dive into the research topics of 'Dynamic Label Graph Matching for Unsupervised Video Re-identification'. Together they form a unique fingerprint.

Cite this