E2 rotational invariants of 01+ and 21+ states for 106Cd: The emergence of collective rotation

T. J. Gray*, J. M. Allmond, R. V.F. Janssens, W. Korten, A. E. Stuchbery, J. L. Wood, A. D. Ayangeakaa, S. Bottoni, B. M. Bucher, C. M. Campbell, M. P. Carpenter, H. L. Crawford, H. David, D. T. Doherty, P. Fallon, M. T. Febbraro, A. Galindo-Uribarri, C. J. Gross, M. Komorowska, F. G. KondevT. Lauritsen, A. O. Macchiavelli, P. Napiorkowsi, E. Padilla-Rodal, S. D. Pain, W. Reviol, D. G. Sarantites, G. Savard, D. Seweryniak, C. Y. Wu, C. H. Yu, S. Zhu

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    The collective structure of 106Cd is elucidated by multi-step Coulomb excitation of a 3.849 MeV/A beam of 106Cd on a 1.1 mg/cm2 208Pb target using GRETINA-CHICO2 at ATLAS. Fourteen E2 matrix elements were obtained. The nucleus 106Cd is a prime example of emergent collectivity that possesses a simple structure: it is free of complexity caused by shape coexistence and has a small, but collectively active number of valence nucleons. This work follows in a long and currently active quest to answer the fundamental question of the origin of nuclear collectivity and deformation, notably in the cadmium isotopes. The results are discussed in terms of phenomenological models, the shell model, and Kumar-Cline sums of E2 matrix elements. The 〈02+||E2||21+〉 matrix element is determined for the first time, providing a total, converged measure of the electric quadrupole strength, 〈Q2〉, of the first-excited 21+ level relative to the 01+ ground state, which does not show an increase as expected of harmonic and anharmonic vibrations. Strong evidence for triaxial shapes in weakly collective nuclei is indicated; collective vibrations are excluded. This is contrary to the only other cadmium result of this kind in 114Cd by C. Fahlander et al. (1988) [38], which is complicated by low-lying shape coexistence near midshell.

    Original languageEnglish
    Article number137446
    JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    Volume834
    DOIs
    Publication statusPublished - 10 Nov 2022

    Fingerprint

    Dive into the research topics of 'E2 rotational invariants of 01+ and 21+ states for 106Cd: The emergence of collective rotation'. Together they form a unique fingerprint.

    Cite this