TY - JOUR
T1 - Early hominin speciation at the Plio/Pleistocene transition
AU - Cameron, David W.
PY - 2003
Y1 - 2003
N2 - Over the last half-decade or so, there has been an explosion in the recognition of hominin genera and species. We now have the late Miocene genera Orrorin and Sahelanthropus, the mid Pliocene genus Kenyanthropus, three new Pliocene species of Australopithecus (A. anamensis, A. garhi and A. bahrelghazali) and a sub species of Ardipithecus (Ar. r. kadabba) to contend with. Excepting also the more traditional species allocated to Paranthropus, Australopithecus and early Homo we are approaching around 15 species over 5 million years (excluding hominin evolution over the last one million years). Can such a large number of hominin species be justified? An examination of extant hominid (Gorilla gorilla, Pan troglodytes, and Pan paniscus) anatomical variability indicates that the range of fossil hominin variability supports the recognition of this large number of fossil species. It is also shown that not all hominins are directly related to the emergence of early Homo and as such have become extinct. Indeed the traditional australopithecine species 'A'. anamensis, 'A'. afarensis and 'A'. garhi are considered here to belong to a distinct genus Praeanthropus. They are also argued not be hominins, but rather an as yet undefined hominid group from which the more derived hominins evolved. The first hominin is represented by A. africanus or a hominin very much like it. The Paranthropus clade is defined by a derived heterochronic condition of peramorphosis, associated with sequential progenesis (contraction of successive growth stages) in brain and dental development, but a mixture of peramorphic and paedomorphic features in its craniofacial anatomy. Conversely, Kenyanthropus and Homo both share a pattern of peramorphosis, associated with sequential hypermorphosis (prolongation of successive growth stages) in brain development, and paedomorphosis processes in cranial, facial and dental development. This suggests, that these two clades share an important synapomorphy not recognised in the parsimony analyses, suggesting that they may form a sister group relationship to the exclusion of Paranthropus. This highlights the need to re-interpret phylogenetic results in terms of function and development. The rapid speciation and extinction as argued here is in keeping with other fossil groups in Africa at the Plio/Pleistocene transition. This emphasises that we must approach the pre-australopithecines and hominins as part of the endemic African fauna, and not in isolation to the evolutionary and climatic processes that were operating all around them.
AB - Over the last half-decade or so, there has been an explosion in the recognition of hominin genera and species. We now have the late Miocene genera Orrorin and Sahelanthropus, the mid Pliocene genus Kenyanthropus, three new Pliocene species of Australopithecus (A. anamensis, A. garhi and A. bahrelghazali) and a sub species of Ardipithecus (Ar. r. kadabba) to contend with. Excepting also the more traditional species allocated to Paranthropus, Australopithecus and early Homo we are approaching around 15 species over 5 million years (excluding hominin evolution over the last one million years). Can such a large number of hominin species be justified? An examination of extant hominid (Gorilla gorilla, Pan troglodytes, and Pan paniscus) anatomical variability indicates that the range of fossil hominin variability supports the recognition of this large number of fossil species. It is also shown that not all hominins are directly related to the emergence of early Homo and as such have become extinct. Indeed the traditional australopithecine species 'A'. anamensis, 'A'. afarensis and 'A'. garhi are considered here to belong to a distinct genus Praeanthropus. They are also argued not be hominins, but rather an as yet undefined hominid group from which the more derived hominins evolved. The first hominin is represented by A. africanus or a hominin very much like it. The Paranthropus clade is defined by a derived heterochronic condition of peramorphosis, associated with sequential progenesis (contraction of successive growth stages) in brain and dental development, but a mixture of peramorphic and paedomorphic features in its craniofacial anatomy. Conversely, Kenyanthropus and Homo both share a pattern of peramorphosis, associated with sequential hypermorphosis (prolongation of successive growth stages) in brain development, and paedomorphosis processes in cranial, facial and dental development. This suggests, that these two clades share an important synapomorphy not recognised in the parsimony analyses, suggesting that they may form a sister group relationship to the exclusion of Paranthropus. This highlights the need to re-interpret phylogenetic results in terms of function and development. The rapid speciation and extinction as argued here is in keeping with other fossil groups in Africa at the Plio/Pleistocene transition. This emphasises that we must approach the pre-australopithecines and hominins as part of the endemic African fauna, and not in isolation to the evolutionary and climatic processes that were operating all around them.
UR - http://www.scopus.com/inward/record.url?scp=0041922347&partnerID=8YFLogxK
U2 - 10.1078/0018-442X-00057
DO - 10.1078/0018-442X-00057
M3 - Article
SN - 0018-442X
VL - 54
SP - 1
EP - 28
JO - HOMO- Journal of Comparative Human Biology
JF - HOMO- Journal of Comparative Human Biology
IS - 1
ER -