@inproceedings{028614f8dcdc46a2b6d804d70236edc2,
title = "Echidna Mark II: One giant leap for 'tilting spine' fibre positioning technology",
abstract = "The Australian Astronomical Observatory's 'tilting spine' fibre positioning technology has been redeveloped to provide superior performance in a smaller package. The new design offers demonstrated closed-loop positioning errors of <2.8 μm RMS in only five moves (∼10 s excluding metrology overheads) and an improved capacity for open-loop tracking during observations. Tilt-induced throughput losses have been halved by lengthening spines while maintaining excellent accuracy. New low-voltage multilayer piezo actuator technology has reduced a spine's peak drive amplitude from ∼150V to <10V, simplifying the control electronics design, reducing the system's overall size, and improving modularity. Every spine is now a truly independent unit with a dedicated drive circuit and no restrictions on the timing or direction of fibre motion.",
keywords = "Fibre positioning, Micro-positioning, Multi-object spectroscopy, Piezoelectric actuators",
author = "James Gilbert and Gavin Dalton",
note = "Publisher Copyright: {\textcopyright} 2016 SPIE.; Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II ; Conference date: 26-06-2016 Through 01-07-2016",
year = "2016",
doi = "10.1117/12.2231366",
language = "English",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Ramon Navarro and Burge, {James H.}",
booktitle = "Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II",
address = "United States",
}