Ecological dynamics of emerging bat virus spillover

Raina K. Plowright*, Peggy Eby, Peter J. Hudson, Ina L. Smith, David Westcott, Wayne L. Bryden, Deborah Middleton, Peter A. Reid, Rosemary A. McFarlane, Gerardo Martin, Gary M. Tabor, Lee F. Skerratt, Dale L. Anderson, Gary Crameri, David Quammen, David Jordan, Paul Freeman, Lin Fa Wang, Jonathan H. Epstein, Glenn A. MarshNina Y. Kung, Hamish McCallum

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    367 Citations (Scopus)

    Abstract

    Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.

    Original languageEnglish
    Article number20142124
    JournalProceedings of the Royal Society B: Biological Sciences
    Volume282
    Issue number1798
    DOIs
    Publication statusPublished - 12 Nov 2014

    Fingerprint

    Dive into the research topics of 'Ecological dynamics of emerging bat virus spillover'. Together they form a unique fingerprint.

    Cite this