TY - JOUR
T1 - Effect of form cues on 1D and 2D motion pooling
AU - Edwards, Mark
AU - Cassanello, Carlos R.
AU - Badcock, David R.
AU - Nishida, Shin'ya
PY - 2013/1/4
Y1 - 2013/1/4
N2 - Local-motion information can provide either 1-dimensional (1D) or 2-dimensional (2D) solutions. 1D signals occur when the aperture problem has not been solved, so each signal is an estimate of the local-orthogonal component of the object's motion. 2D signals occur when the aperture problem has been solved, so each signal is an estimate of the object's motion. Previous research (JoV, 2009, 9, 1-25) has shown that 1D and 2D signals are pooled differently, via intersection-of-constraints (IOC) and vector-average processes, respectively. Previous research (e.g. Vis. Res., 2003, 2290-2301) has also indicated that form cues can influence how motion signals are perceived. We investigated whether forms cues can affect the pooling of motion signals and whether they differentially affect the pooling of 1D and 2D signals. Global-Gabor (GG) and global-plaid (GP) stimuli were used. These stimuli consist of multiple apertures that contain either Gabors or plaids, respectively. In the GG stimulus the global solution is defined by having the Gabor carriers move (1D signals) such that they are consistent with a single IOC-defined solution. In the GP stimuli the plaid motion (2D signals) are consistent with a vector-average solution defined by a Gaussian distribution. Form cues can be introduced by adding orientation information to the apertures that is either consistent (aligned with) or inconsistent (orthogonal to) with the global-solution. With the 1D stimuli, form cues affect how the motion signals are pooled, with motion being perceived in the direction defined by the orientation cue. Orientation cues had no direct effect on the pooling of the 2D signals.
AB - Local-motion information can provide either 1-dimensional (1D) or 2-dimensional (2D) solutions. 1D signals occur when the aperture problem has not been solved, so each signal is an estimate of the local-orthogonal component of the object's motion. 2D signals occur when the aperture problem has been solved, so each signal is an estimate of the object's motion. Previous research (JoV, 2009, 9, 1-25) has shown that 1D and 2D signals are pooled differently, via intersection-of-constraints (IOC) and vector-average processes, respectively. Previous research (e.g. Vis. Res., 2003, 2290-2301) has also indicated that form cues can influence how motion signals are perceived. We investigated whether forms cues can affect the pooling of motion signals and whether they differentially affect the pooling of 1D and 2D signals. Global-Gabor (GG) and global-plaid (GP) stimuli were used. These stimuli consist of multiple apertures that contain either Gabors or plaids, respectively. In the GG stimulus the global solution is defined by having the Gabor carriers move (1D signals) such that they are consistent with a single IOC-defined solution. In the GP stimuli the plaid motion (2D signals) are consistent with a vector-average solution defined by a Gaussian distribution. Form cues can be introduced by adding orientation information to the apertures that is either consistent (aligned with) or inconsistent (orthogonal to) with the global-solution. With the 1D stimuli, form cues affect how the motion signals are pooled, with motion being perceived in the direction defined by the orientation cue. Orientation cues had no direct effect on the pooling of the 2D signals.
KW - Aperture problem
KW - Form-motion interactions
UR - http://www.scopus.com/inward/record.url?scp=84869848905&partnerID=8YFLogxK
U2 - 10.1016/j.visres.2012.10.015
DO - 10.1016/j.visres.2012.10.015
M3 - Article
SN - 0042-6989
VL - 76
SP - 94
EP - 104
JO - Vision Research
JF - Vision Research
ER -