Effect of irradiation temperature and ion flux on electrical isolation of GaN

S. O. Kucheyev*, H. Boudinov, J. S. Williams, C. Jagadish, G. Li

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    42 Citations (Scopus)

    Abstract

    We study the evolution of sheet resistance of n-type GaN epilayers irradiated with MeV 1H and 12C ions. Results show that both implantation temperature (varied from 77 up to 423 K) and ion beam flux affect the process of electrical isolation in the case of irradiation with 12C ions. This behavior is consistent with significant dynamic annealing occurring in GaN during MeV light-ion bombardment, which suggests a scenario where the centers responsible for electrical isolation are defect clusters or anti-site-related defects. Dynamic annealing causes simple ion-beam-generated Frenkel pairs to annihilate (or cluster) during irradiation at liquid nitrogen temperature and above. These beam-flux and irradiation-temperature effects are not observed during bombardment with lighter 1H ions, which produce very dilute collision cascades. A qualitative model is proposed to explain temperature and flux effects in GaN in the MeV light-ion bombardment regime used for electrical isolation.

    Original languageEnglish
    Pages (from-to)4117-4120
    Number of pages4
    JournalJournal of Applied Physics
    Volume91
    Issue number7
    DOIs
    Publication statusPublished - 1 Apr 2002

    Fingerprint

    Dive into the research topics of 'Effect of irradiation temperature and ion flux on electrical isolation of GaN'. Together they form a unique fingerprint.

    Cite this