Effect of network topology on relative permeability

Ji Youn Arns, Vanessa Robins, Adrian P. Sheppard, Robert M. Sok, W. V. Pinczewski, Mark A. Knackstedt*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    93 Citations (Scopus)

    Abstract

    We consider the role of topology on drainage relative permeabilities derived from network models. We describe the topological properties of rock networks derived from a suite of tomographic images of Fontainbleau sandstone (Lindquist et al., 2000). All rock networks display a broad distribution of coordination number and the presence of long-range topological bonds. We show the importance of accurately reproducing sample topology when deriving relative permeability curves from the model networks. Comparisons between the relative permeability curves for the rock networks and those computed on a regular cubic lattice with identical geometric characteristics (pore and throat size distributions) show poor agreement. Relative permeabilities computed on regular lattices and on diluted lattices with a similar average coordination number to the rock networks also display poor agreement. We find that relative permeability curves computed on stochastic networks which honour the full coordination number distribution of the rock networks produce reasonable agreement with the rock networks. We show that random and regular lattices with the same coordination number distribution produce similar relative permeabilities and that the introduction of longer-range topological bonds has only a small effect. We show that relative permeabilities for networks exhibiting pore-throat size correlations and sizes up to the core-scale still exhibit a significant dependence on network topology. The results show the importance of incorporating realistic 3D topologies in network models for predicting multiphase flow properties.

    Original languageEnglish
    Pages (from-to)21-46
    Number of pages26
    JournalTransport in Porous Media
    Volume55
    Issue number1
    DOIs
    Publication statusPublished - Apr 2004

    Fingerprint

    Dive into the research topics of 'Effect of network topology on relative permeability'. Together they form a unique fingerprint.

    Cite this