TY - JOUR
T1 - Effects of inbreeding and elevated rearing temperatures on strategic sperm investment
AU - Chung, Meng Han Joseph
AU - Mahmud-Al-Hasan, Md
AU - Jennions, Michael D.
AU - Head, Megan L.
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - Males often strategically adjust the number of available sperm based on the social context (i.e. sperm priming response), but it remains unclear how environmental and genetic factors shape this adjustment. In freshwater ecosystems, high ambient temperatures often lead to isolated pools of hotter water in which inbreeding occurs. Higher water temperatures and inbreeding can impair fish development, potentially disrupting sperm production. We used guppies (Poecilia reticulata) to investigate how developmental temperature (26°C, 30°C) and male inbreeding status (inbred, outbred) influence their sperm priming response. We also tested if sperm priming was affected by whether the female was a relative (sister) and whether she was inbred or outbred. There was no effect of rearing temperature; male inbreeding status alone determined the number of available sperm in response to female presence, her inbreeding status, and her relatedness. Inbred males produced significantly more sperm in the presence of an unrelated, outbred female than when no female was present. Conversely, outbred males did not alter the number of sperm available in response to female presence or relatedness. Moreover, inbred males produced marginally more sperm when exposed to an unrelated female that was outbred rather than inbred, but there was no difference when exposed to an inbred female that was unrelated versus related. Together, a sperm priming response was only observed in inbred males when exposed to an outbred female. Outbred females in our study were larger than inbred females, suggesting that inbred males strategically allocated ejaculate resources toward females in better condition.
AB - Males often strategically adjust the number of available sperm based on the social context (i.e. sperm priming response), but it remains unclear how environmental and genetic factors shape this adjustment. In freshwater ecosystems, high ambient temperatures often lead to isolated pools of hotter water in which inbreeding occurs. Higher water temperatures and inbreeding can impair fish development, potentially disrupting sperm production. We used guppies (Poecilia reticulata) to investigate how developmental temperature (26°C, 30°C) and male inbreeding status (inbred, outbred) influence their sperm priming response. We also tested if sperm priming was affected by whether the female was a relative (sister) and whether she was inbred or outbred. There was no effect of rearing temperature; male inbreeding status alone determined the number of available sperm in response to female presence, her inbreeding status, and her relatedness. Inbred males produced significantly more sperm in the presence of an unrelated, outbred female than when no female was present. Conversely, outbred males did not alter the number of sperm available in response to female presence or relatedness. Moreover, inbred males produced marginally more sperm when exposed to an unrelated female that was outbred rather than inbred, but there was no difference when exposed to an inbred female that was unrelated versus related. Together, a sperm priming response was only observed in inbred males when exposed to an outbred female. Outbred females in our study were larger than inbred females, suggesting that inbred males strategically allocated ejaculate resources toward females in better condition.
KW - climate warming
KW - developmental stress
KW - inbreeding
KW - poor start in life
KW - sperm investment
UR - http://www.scopus.com/inward/record.url?scp=85196727732&partnerID=8YFLogxK
U2 - 10.1093/beheco/arae044
DO - 10.1093/beheco/arae044
M3 - Article
AN - SCOPUS:85196727732
SN - 1045-2249
VL - 35
SP - 1
EP - 10
JO - Behavioral Ecology
JF - Behavioral Ecology
IS - 4
M1 - arae044
ER -