Efficient and reliable divergence-conforming methods for an elasticity-poroelasticity interface problem

Santiago Badia, Martin Hornkjøl*, Arbaz Khan, Kent André Mardal, Alberto F. Martín, Ricardo Ruiz-Baier

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    We present a finite element discretization to model the interaction between a poroelastic structure and an elastic medium. The consolidation problem considers fully coupled deformations across an interface, ensuring continuity of displacement and total traction, as well as no-flux for the fluid phase. Our formulation of the poroelasticity equations incorporates displacement, fluid pressure, and total pressure, while the elasticity equations adopt a displacement-pressure formulation. Notably, the transmission conditions at the interface are enforced without the need for Lagrange multipliers. We demonstrate the stability and convergence of the divergence-conforming finite element method across various polynomial degrees. The a priori error bounds remain robust, even when considering large variations in intricate model parameters such as Lamé constants, permeability, and storativity coefficient. To enhance computational efficiency and reliability, we develop residual-based a posteriori error estimators that are independent of the aforementioned coefficients. Additionally, we devise parameter-robust and optimal block diagonal preconditioners. Through numerical examples, including adaptive scenarios, we illustrate the scheme's properties such as convergence and parameter robustness.

    Original languageEnglish
    Pages (from-to)173-194
    Number of pages22
    JournalComputers and Mathematics with Applications
    Volume157
    DOIs
    Publication statusPublished - 1 Mar 2024

    Fingerprint

    Dive into the research topics of 'Efficient and reliable divergence-conforming methods for an elasticity-poroelasticity interface problem'. Together they form a unique fingerprint.

    Cite this