Efficient Detection of Overlapping Communities Using Asymmetric Triangle Cuts

Mojtaba Rezvani, Weifa Liang*, Chengfei Liu, Jeffrey Xu Yu

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    21 Citations (Scopus)

    Abstract

    Real social networks contain many communities, where members within each community are densely connected with each other, while they are sparsely connected with the members outside of the community. Since each member can join multiple communities simultaneously, communities in social networks are usually overlapping with each other. How to efficiently and effectively identify overlapping communities in a large social network becomes a fundamental problem in the big data era. Most existing studies on community finding focused on non-overlapping communities based on several well-known community fitness metrics. However, recent investigations have shown that these fitness metrics may suffer free rider and separation effects where the overlapping region of two communities always belongs to the denser one, rather to both of them. In this paper, we study the overlapping community detection problem in social networks that not only takes the quality of the found overlapping communities but also incorporate both free rider and separation effects on the found communities into consideration. Specifically, in this paper, we first propose a novel community fitness metric - triangle based fitness metric, for overlapping community detection that can minimize the free rider and separation effects on found overlapping communities, and show that the problem is NP-hard. We then propose an efficient yet scalable algorithm for the problem that can deliver a feasible solution. We finally validate the effectiveness of the proposed fitness metric and evaluate the performance of the proposed algorithm, through conducting extensive experiments on real-world datasets with over 100 million vertices and edges. Experimental results demonstrate that the proposed algorithm is very promising.

    Original languageEnglish
    Article number8315057
    Pages (from-to)2093-2105
    Number of pages13
    JournalIEEE Transactions on Knowledge and Data Engineering
    Volume30
    Issue number11
    DOIs
    Publication statusPublished - 1 Nov 2018

    Fingerprint

    Dive into the research topics of 'Efficient Detection of Overlapping Communities Using Asymmetric Triangle Cuts'. Together they form a unique fingerprint.

    Cite this