TY - GEN
T1 - Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map
AU - Liu, Liu
AU - Li, Hongdong
AU - Dai, Yuchao
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/12/22
Y1 - 2017/12/22
N2 - Given an image of a street scene in a city, this paper develops a new method that can quickly and precisely pinpoint at which location (as well as viewing direction) the image was taken, against a pre-stored large-scale 3D point-cloud map of the city. We adopt the recently developed 2D-3D direct feature matching framework for this task [23,31,32,42-44]. This is a challenging task especially for large-scale problems. As the map size grows bigger, many 3D points in the wider geographical area can be visually very similar-or even identical-causing severe ambiguities in 2D-3D feature matching. The key is to quickly and unambiguously find the correct matches between a query image and the large 3D map. Existing methods solve this problem mainly via comparing individual features' visual similarities in a local and per feature manner, thus only local solutions can be found, inadequate for large-scale applications. In this paper, we introduce a global method which harnesses global contextual information exhibited both within the query image and among all the 3D points in the map. This is achieved by a novel global ranking algorithm, applied to a Markov network built upon the 3D map, which takes account of not only visual similarities between individual 2D-3D matches, but also their global compatibilities (as measured by co-visibility) among all matching pairs found in the scene. Tests on standard benchmark datasets show that our method achieved both higher precision and comparable recall, compared with the state-of-the-art.
AB - Given an image of a street scene in a city, this paper develops a new method that can quickly and precisely pinpoint at which location (as well as viewing direction) the image was taken, against a pre-stored large-scale 3D point-cloud map of the city. We adopt the recently developed 2D-3D direct feature matching framework for this task [23,31,32,42-44]. This is a challenging task especially for large-scale problems. As the map size grows bigger, many 3D points in the wider geographical area can be visually very similar-or even identical-causing severe ambiguities in 2D-3D feature matching. The key is to quickly and unambiguously find the correct matches between a query image and the large 3D map. Existing methods solve this problem mainly via comparing individual features' visual similarities in a local and per feature manner, thus only local solutions can be found, inadequate for large-scale applications. In this paper, we introduce a global method which harnesses global contextual information exhibited both within the query image and among all the 3D points in the map. This is achieved by a novel global ranking algorithm, applied to a Markov network built upon the 3D map, which takes account of not only visual similarities between individual 2D-3D matches, but also their global compatibilities (as measured by co-visibility) among all matching pairs found in the scene. Tests on standard benchmark datasets show that our method achieved both higher precision and comparable recall, compared with the state-of-the-art.
UR - http://www.scopus.com/inward/record.url?scp=85041914562&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2017.260
DO - 10.1109/ICCV.2017.260
M3 - Conference contribution
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 2391
EP - 2400
BT - Proceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE International Conference on Computer Vision, ICCV 2017
Y2 - 22 October 2017 through 29 October 2017
ER -