Efficient linear programming for dense CRFs

Thalaiyasingam Ajanthan, Alban Desmaison, Rudy Bunel, Mathieu Salzmann, Philip H.S. Torr, M. Pawan Kumar

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    12 Citations (Scopus)

    Abstract

    The fully connected conditional random field (CRF) with Gaussian pairwise potentials has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a linear programming (LP) relaxation, the state-of-the-art algorithm is too slow to be useful in practice. To alleviate this deficiency, we introduce an efficient LP minimization algorithm for dense CRFs. To this end, we develop a proximal minimization framework, where the dual of each proximal problem is optimized via block coordinate descent. We show that each block of variables can be efficiently optimized. Specifically, for one block, the problem decomposes into significantly smaller subproblems, each of which is defined over a single pixel. For the other block, the problem is optimized via conditional gradient descent. This has two advantages: 1) the conditional gradient can be computed in a time linear in the number of pixels and labels; and 2) the optimal step size can be computed analytically. Our experiments on standard datasets provide compelling evidence that our approach outperforms all existing baselines including the previous LP based approach for dense CRFs.

    Original languageEnglish
    Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages2934-2942
    Number of pages9
    ISBN (Electronic)9781538604571
    DOIs
    Publication statusPublished - 6 Nov 2017
    Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
    Duration: 21 Jul 201726 Jul 2017

    Publication series

    NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    Volume2017-January

    Conference

    Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    Country/TerritoryUnited States
    CityHonolulu
    Period21/07/1726/07/17

    Fingerprint

    Dive into the research topics of 'Efficient linear programming for dense CRFs'. Together they form a unique fingerprint.

    Cite this