TY - GEN
T1 - Efficient spectral feature selection with minimum redundancy
AU - Zhao, Zheng
AU - Wang, Lei
AU - Liu, Huan
PY - 2010
Y1 - 2010
N2 - Spectral feature selection identifies relevant features by measuring their capability of preserving sample similarity. It provides a powerful framework for both supervised and unsupervised feature selection, and has been proven to be effective in many real-world applications. One common drawback associated with most existing spectral feature selection algorithms is that they evaluate features individually and cannot identify redundant features. Since redundant features can have significant adverse effect on learning performance, it is necessary to address this limitation for spectral feature selection. To this end, we propose a novel spectral feature selection algorithm to handle feature redundancy, adopting an embedded model. The algorithm is derived from a formulation based on a sparse multi-output regression with a L 2,1-norm constraint. We conduct theoretical analysis on the properties of its optimal solutions, paving the way for designing an efficient path-following solver. Extensive experiments show that the proposed algorithm can do well in both selecting relevant features and removing redundancy.
AB - Spectral feature selection identifies relevant features by measuring their capability of preserving sample similarity. It provides a powerful framework for both supervised and unsupervised feature selection, and has been proven to be effective in many real-world applications. One common drawback associated with most existing spectral feature selection algorithms is that they evaluate features individually and cannot identify redundant features. Since redundant features can have significant adverse effect on learning performance, it is necessary to address this limitation for spectral feature selection. To this end, we propose a novel spectral feature selection algorithm to handle feature redundancy, adopting an embedded model. The algorithm is derived from a formulation based on a sparse multi-output regression with a L 2,1-norm constraint. We conduct theoretical analysis on the properties of its optimal solutions, paving the way for designing an efficient path-following solver. Extensive experiments show that the proposed algorithm can do well in both selecting relevant features and removing redundancy.
UR - http://www.scopus.com/inward/record.url?scp=77958565426&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781577354642
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 673
EP - 678
BT - AAAI-10 / IAAI-10 - Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference
PB - AI Access Foundation
T2 - 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference, AAAI-10 / IAAI-10
Y2 - 11 July 2010 through 15 July 2010
ER -