TY - JOUR
T1 - Elemental Abundances of the Super-Neptune WASP-107b’s Host Star Using High-resolution, Near-infrared Spectroscopy
AU - Hejazi, Neda
AU - Crossfield, Ian J.M.
AU - Nordlander, Thomas
AU - Mansfield, Megan
AU - Souto, Diogo
AU - Marfil, Emilio
AU - Coria, David R.
AU - Brande, Jonathan
AU - Polanski, Alex S.
AU - Hand, Joseph E.
AU - Wienke, Kate F.
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - We present the first elemental abundance measurements of the K dwarf (K7V) exoplanet-host star WASP-107 using high-resolution (R ≃45,000), near-infrared (H- and K-band) spectra taken from Gemini-S/IGRINS. We use the previously determined physical parameters of the star from the literature and infer the abundances of 15 elements—C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni, all with precision < 0.1 dex—based on model fitting using MARCS model atmospheres and the Turbospectrum spectral synthesis code. Our results show near-solar abundances and a carbon-to-oxygen ratio (C/O) of 0.50 ± 0.10, which is consistent with the solar value of 0.54 ± 0.09. The orbiting planet, WASP-107b, is a super-Neptune with a mass in the Neptune regime (=1.8 M Nep) and a radius close to Jupiter's (=0.94 R Jup). This planet is also being targeted by four JWST Cycle 1 programs in transit and eclipse, which should provide highly precise measurements of atmospheric abundances. This will enable us to properly compare the planetary and stellar chemical abundances, which is essential in understanding the formation mechanisms, internal structure, and chemical composition of exoplanets. Our study is a proof-of-concept that will pave the way for such measurements to be made for all of JWST’s cooler exoplanet-host stars.
AB - We present the first elemental abundance measurements of the K dwarf (K7V) exoplanet-host star WASP-107 using high-resolution (R ≃45,000), near-infrared (H- and K-band) spectra taken from Gemini-S/IGRINS. We use the previously determined physical parameters of the star from the literature and infer the abundances of 15 elements—C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni, all with precision < 0.1 dex—based on model fitting using MARCS model atmospheres and the Turbospectrum spectral synthesis code. Our results show near-solar abundances and a carbon-to-oxygen ratio (C/O) of 0.50 ± 0.10, which is consistent with the solar value of 0.54 ± 0.09. The orbiting planet, WASP-107b, is a super-Neptune with a mass in the Neptune regime (=1.8 M Nep) and a radius close to Jupiter's (=0.94 R Jup). This planet is also being targeted by four JWST Cycle 1 programs in transit and eclipse, which should provide highly precise measurements of atmospheric abundances. This will enable us to properly compare the planetary and stellar chemical abundances, which is essential in understanding the formation mechanisms, internal structure, and chemical composition of exoplanets. Our study is a proof-of-concept that will pave the way for such measurements to be made for all of JWST’s cooler exoplanet-host stars.
UR - http://www.scopus.com/inward/record.url?scp=85162112249&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/accb97
DO - 10.3847/1538-4357/accb97
M3 - Article
SN - 0004-637X
VL - 949
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 79
ER -