TY - JOUR
T1 - Energy balance and AlfvCrossed D sign©n Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field
AU - Beattie, James R.
AU - Krumholz, Mark R.
AU - Skalidis, Raphael
AU - Federrath, Christoph
AU - Seta, Amit
AU - Crocker, Roland M.
AU - Mocz, Philip
AU - Kriel, Neco
N1 - Publisher Copyright:
©nic large-scale field. Under the assumption of exact energy equipartition between these terms, we derive relations for the magnetic and coupling term fluctuations, which provide excellent, parameter-free agreement with time-averaged data from 280 numerical simulations of compressible magnetohydrodynamic (MHD) turbulence. Furthermore, we explore the relation between the turbulent mean field and total AlfvCrossed D sign.
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Energy equipartition is a powerful theoretical tool for understanding astrophysical plasmas. It is invoked, for example, to measure magnetic fields in the interstellar medium (ISM), as evidence for small-scale turbulent dynamo action, and, in general, to estimate the energy budget of star-forming molecular clouds. In this study, we motivate and explore the role of the volume-averaged root-mean-squared (rms) magnetic coupling term between the turbulent, $\delta {\boldsymbol{B}}$, and large-scale, ${\boldsymbol{B}}_0$, fields, ${\left\langle (\delta \mathrm{{\boldsymbol {\mathit {B}}}}\cdot {\mathrm{{\boldsymbol {\mathit {B}}}}_0})^{2} \right\rangle ^{1/2}_{\mathcal {V}}}$.
AB - Energy equipartition is a powerful theoretical tool for understanding astrophysical plasmas. It is invoked, for example, to measure magnetic fields in the interstellar medium (ISM), as evidence for small-scale turbulent dynamo action, and, in general, to estimate the energy budget of star-forming molecular clouds. In this study, we motivate and explore the role of the volume-averaged root-mean-squared (rms) magnetic coupling term between the turbulent, $\delta {\boldsymbol{B}}$, and large-scale, ${\boldsymbol{B}}_0$, fields, ${\left\langle (\delta \mathrm{{\boldsymbol {\mathit {B}}}}\cdot {\mathrm{{\boldsymbol {\mathit {B}}}}_0})^{2} \right\rangle ^{1/2}_{\mathcal {V}}}$.
KW - ISM: kinematics and dynamics
KW - ISM: magnetic fields
KW - MHD
KW - dynamo
KW - turbulence
UR - http://www.scopus.com/inward/record.url?scp=85139670290&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac2099
DO - 10.1093/mnras/stac2099
M3 - Article
SN - 0035-8711
VL - 515
SP - 5267
EP - 5284
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -