TY - JOUR
T1 - Energy use and CO2 emissions in the UK universities
T2 - An extended Kaya identity analysis
AU - Eskander, Shaikh M.S.U.
AU - Nitschke, Jakob
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/8/1
Y1 - 2021/8/1
N2 - We investigate the progress of the UK universities in greening their energy sources in line with the UK's goal of becoming a net-zero economy by 2050. Using the HESA estate management data for 116 universities over 2012-13 to 2018–19, we employ a Log Mean Divisa Index decomposition method within an extended Kaya identity framework to decouple the changes in total carbon emissions from a range of variables, with a special focus on the impact of different energy sources on energy use and carbon efficiency measures. Overall, between 2012-13 and 2018–19, universities have reduced emissions by 29% although their energy consumption remained mostly stable, implying that these reductions mostly stemmed from reductions in emission coefficient effect (which measures carbon efficiency of energy generation) by 24% and energy intensity effect by 25%. Consistently, estimated correlation coefficients confirm that emission coefficient, intensity, and affluence effects are major contributors behind the annual change in total emissions, with estimated correlation coefficients being 0.42, 0.66, and −0.24, respectively. The share of renewable energy sources was reduced by 2.2%, which is a major reason, in addition to increased number of students, behind the sector's overall failure achieve the 2020 goal of reducing emissions by 43% from the 2005 level. Finally, our results also expose considerable regional variations in mitigating and worsening factors behind emissions that calls for stronger coordination and supervision by policymakers.
AB - We investigate the progress of the UK universities in greening their energy sources in line with the UK's goal of becoming a net-zero economy by 2050. Using the HESA estate management data for 116 universities over 2012-13 to 2018–19, we employ a Log Mean Divisa Index decomposition method within an extended Kaya identity framework to decouple the changes in total carbon emissions from a range of variables, with a special focus on the impact of different energy sources on energy use and carbon efficiency measures. Overall, between 2012-13 and 2018–19, universities have reduced emissions by 29% although their energy consumption remained mostly stable, implying that these reductions mostly stemmed from reductions in emission coefficient effect (which measures carbon efficiency of energy generation) by 24% and energy intensity effect by 25%. Consistently, estimated correlation coefficients confirm that emission coefficient, intensity, and affluence effects are major contributors behind the annual change in total emissions, with estimated correlation coefficients being 0.42, 0.66, and −0.24, respectively. The share of renewable energy sources was reduced by 2.2%, which is a major reason, in addition to increased number of students, behind the sector's overall failure achieve the 2020 goal of reducing emissions by 43% from the 2005 level. Finally, our results also expose considerable regional variations in mitigating and worsening factors behind emissions that calls for stronger coordination and supervision by policymakers.
KW - Emissions
KW - Energy
KW - Kaya identity
KW - University
UR - http://www.scopus.com/inward/record.url?scp=85105776587&partnerID=8YFLogxK
U2 - 10.1016/j.jclepro.2021.127199
DO - 10.1016/j.jclepro.2021.127199
M3 - Article
SN - 0959-6526
VL - 309
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
M1 - 127199
ER -