TY - JOUR
T1 - Enforced expression of GATA-3 in transgenic mice inhibits Th1 differentiation and induces the formation of a T1/ST2-expressing Th2-committed T cell compartment in vivo
AU - Nawijn, M. C.
AU - Dingjan, G. M.
AU - Ferreira, R.
AU - Lambrecht, B. N.
AU - Karis, A.
AU - Grosveld, F.
AU - Savelkoul, H.
AU - Hendriks, R. W.
PY - 2001/7/15
Y1 - 2001/7/15
N2 - The transcription factor GATA-3 is essential for early T cell development and differentiation of naive CD4+ T cells into Th2 effector cells. To study the function of GATA-3 during T cell-mediated immune responses in vivo, we investigated CD2-GATA3-transgenic mice in which GATA-3 expression is driven by the CD2 locus control region. Both in the CD4+ and the CD8+ T cell population the proportion of cells exhibiting a CD44highCD45RBlowCD62Llow Ag-experienced phenotype was increased. In CD2-GATA3-transgenic mice, large fractions of peripheral CD4+ T cells expressed the IL-1 receptor family member T1/ST2, indicative of advanced Th2 commitment. Upon in vitro T cell stimulation, the ability to produce IL-2 and IFN-γ was decreased. Moreover, CD4+ T cells manifested rapid secretion of the Th2 cytokines IL-4, IL-5, and IL-10, reminiscent of Th2 memory cells. In contrast to wild-type CD4+ cells, which lost GATA-3 expression when cultured under Th1-polarizing conditions, CD2-GATA3-transgenic CD4+ cells maintained expression of GATA-3 protein. Under Th1 conditions, cellular proliferation of CD2-GATA3-transgenic CD4+ cells was severely hampered, IFN-γ production was decreased and Th2 cytokine production was increased. Enforced GATA-3 expression inhibited Th1-mediated in vivo responses, such as Ag-specific IgG2a production or a delayed-type hypersensitivity response to keyhole limpet hemocyanin. Collectively, these observations indicate that enforced GATA-3 expression selectively inhibits Th1 differentiation and induces Th2 differentiation. The increased functional capacity to secrete Th2 cytokines, along with the increased expression of surface markers for Ag-experienced Th2-committed cells, would argue for a role of GATA-3 in Th2 memory formation.
AB - The transcription factor GATA-3 is essential for early T cell development and differentiation of naive CD4+ T cells into Th2 effector cells. To study the function of GATA-3 during T cell-mediated immune responses in vivo, we investigated CD2-GATA3-transgenic mice in which GATA-3 expression is driven by the CD2 locus control region. Both in the CD4+ and the CD8+ T cell population the proportion of cells exhibiting a CD44highCD45RBlowCD62Llow Ag-experienced phenotype was increased. In CD2-GATA3-transgenic mice, large fractions of peripheral CD4+ T cells expressed the IL-1 receptor family member T1/ST2, indicative of advanced Th2 commitment. Upon in vitro T cell stimulation, the ability to produce IL-2 and IFN-γ was decreased. Moreover, CD4+ T cells manifested rapid secretion of the Th2 cytokines IL-4, IL-5, and IL-10, reminiscent of Th2 memory cells. In contrast to wild-type CD4+ cells, which lost GATA-3 expression when cultured under Th1-polarizing conditions, CD2-GATA3-transgenic CD4+ cells maintained expression of GATA-3 protein. Under Th1 conditions, cellular proliferation of CD2-GATA3-transgenic CD4+ cells was severely hampered, IFN-γ production was decreased and Th2 cytokine production was increased. Enforced GATA-3 expression inhibited Th1-mediated in vivo responses, such as Ag-specific IgG2a production or a delayed-type hypersensitivity response to keyhole limpet hemocyanin. Collectively, these observations indicate that enforced GATA-3 expression selectively inhibits Th1 differentiation and induces Th2 differentiation. The increased functional capacity to secrete Th2 cytokines, along with the increased expression of surface markers for Ag-experienced Th2-committed cells, would argue for a role of GATA-3 in Th2 memory formation.
UR - http://www.scopus.com/inward/record.url?scp=0035879115&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.167.2.724
DO - 10.4049/jimmunol.167.2.724
M3 - Article
C2 - 11441076
AN - SCOPUS:0035879115
SN - 0022-1767
VL - 167
SP - 724
EP - 732
JO - Journal of Immunology
JF - Journal of Immunology
IS - 2
ER -