Enhancing a diffusion algorithm for 4D image segmentation using local information

Philipp Lösel*, Vincent Heuveline

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

27 Citations (Scopus)

Abstract

Inspired by the diffusion of a particle, we present a novel approach for performing a semiautomatic segmentation of tomographic images in 3D, 4D or higher dimensions to meet the requirements of high-throughput measurements in a synchrotron X-ray microtomograph. Given a small number of 2D-slices with at least two manually labeled segments, one can either analytically determine the probability that an intelligently weighted random walk starting at one labeled pixel will be at a certain time at a specific position in the dataset or determine the probability approximately by performing several random walks. While the weights of a random walk take into account local information at the starting point, the random walk itself can be in any dimension. Starting a great number of random walks in each labeled pixel, a voxel in the dataset will be hit by several random walks over time. Hence, the image can be segmented by assigning each voxel to the label where the random walks most likely started from. Due to the high scalability of random walks, this approach is suitable for high throughput measurements. Additionally, we describe an interactively adjusted active contours slice by slice method considering local information, where we start with one manually labeled slice and move forward in any direction. This approach is superior with respect to accuracy towards the diffusion algorithm but inferior in the amount of tedious manual processing steps. The methods were applied on 3D and 4D datasets and evaluated by means of manually labeled images obtained in a realistic scenario with biologists.

Original languageEnglish
Title of host publicationMedical Imaging 2016
Subtitle of host publicationImage Processing
EditorsMartin A. Styner, Elsa D. Angelini, Elsa D. Angelini
PublisherSPIE
ISBN (Electronic)9781510600195
DOIs
Publication statusPublished - 2016
Externally publishedYes
EventMedical Imaging 2016: Image Processing - San Diego, United States
Duration: 1 Mar 20163 Mar 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9784
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2016: Image Processing
Country/TerritoryUnited States
CitySan Diego
Period1/03/163/03/16

Fingerprint

Dive into the research topics of 'Enhancing a diffusion algorithm for 4D image segmentation using local information'. Together they form a unique fingerprint.

Cite this