Environmental and Biogeographic Drivers behind Alpine Plant Thermal Tolerance and Genetic Variation

Lisa M. Danzey*, Verónica F. Briceño, Alicia M. Cook, Adrienne B. Nicotra, Gwendolyn Peyre, Maurizio Rossetto, Jia Yee S. Yap, Andrea Leigh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates.

Original languageEnglish
Article number1271
Number of pages26
JournalPlants
Volume13
Issue number9
DOIs
Publication statusPublished - 4 May 2024

Fingerprint

Dive into the research topics of 'Environmental and Biogeographic Drivers behind Alpine Plant Thermal Tolerance and Genetic Variation'. Together they form a unique fingerprint.

Cite this