TY - JOUR
T1 - Environmental magnetic fingerprinting of anthropogenic and natural atmospheric deposition over southwestern Europe
AU - Larrasoaña, Juan C.
AU - Pey, Jorge
AU - Zhao, Xiang
AU - Heslop, David
AU - Mochales, Tania
AU - Mata, Pilar
AU - Beamud, Elisabet
AU - Reyes, Jesús
AU - Cerro, José C.
AU - Pérez, Noemí
AU - Castillo, Sonia
N1 - Publisher Copyright:
© 2021 The Author(s)
PY - 2021/9/15
Y1 - 2021/9/15
N2 - Here we present an environmental magnetic study of atmospheric deposition collected by a multi-site network in Spain that covers fourteen locations representative of urban, industrial, agricultural, and natural environments across southwestern Europe. We have combined magnetic methods with scanning electron microscopy and geochemical data to characterize the magnetic mineral assemblages of particulate matter across different types of sites and phenomenological scenarios, and to unravel their environmental significance in terms of the most important anthropogenic and natural components of atmospheric deposition. Our results enable identification of two magnetite/maghemite components of anthropogenic origin, derived mostly from vehicular traffic, plus a hematite component associated with a baseline supply of north African dust, in all the studied sites regardless of their type. The ubiquitous presence of anthropogenic magnetite/maghemite particles in pristine natural environments, albeit in lower concentrations, point to their arrival from neighbouring urban areas through atmospheric mixing processes. Samples including particulate matter deposited during distinctively intense periods of north African dust supply are characterized by a fourth component, represented also by coarser-grained hematite, that is likely derived from a different source area within the Sahara Desert. The concomitant increase observed in these cases in the amounts of magnetite/maghemite particles suggests strongly that part of the magnetite/maghemite load attributed to anthropogenic sources for the rest of the phenomenological scenarios is aeolian in origin. This seems to explain the overall moderate correlation observed between magnetite/maghemite contents and proxies for vehicular traffic, and demonstrates the need for caution when interpreting environmental magnetic proxies for magnetite/maghemite abundances in terms of anthropogenic loads. This is especially the case in southern European cities where a steady supply of north African dust occurs throughout most of the year. Our results show a good correlation between hematite abundances and geochemical proxies for north African dust, which collectively delineate broad maxima during the summer and large peaks during distinctive dust breakouts. Thus, environmental magnetic proxies of hematite abundances can be used to monitor the contribution of natural sources to atmospheric deposition.
AB - Here we present an environmental magnetic study of atmospheric deposition collected by a multi-site network in Spain that covers fourteen locations representative of urban, industrial, agricultural, and natural environments across southwestern Europe. We have combined magnetic methods with scanning electron microscopy and geochemical data to characterize the magnetic mineral assemblages of particulate matter across different types of sites and phenomenological scenarios, and to unravel their environmental significance in terms of the most important anthropogenic and natural components of atmospheric deposition. Our results enable identification of two magnetite/maghemite components of anthropogenic origin, derived mostly from vehicular traffic, plus a hematite component associated with a baseline supply of north African dust, in all the studied sites regardless of their type. The ubiquitous presence of anthropogenic magnetite/maghemite particles in pristine natural environments, albeit in lower concentrations, point to their arrival from neighbouring urban areas through atmospheric mixing processes. Samples including particulate matter deposited during distinctively intense periods of north African dust supply are characterized by a fourth component, represented also by coarser-grained hematite, that is likely derived from a different source area within the Sahara Desert. The concomitant increase observed in these cases in the amounts of magnetite/maghemite particles suggests strongly that part of the magnetite/maghemite load attributed to anthropogenic sources for the rest of the phenomenological scenarios is aeolian in origin. This seems to explain the overall moderate correlation observed between magnetite/maghemite contents and proxies for vehicular traffic, and demonstrates the need for caution when interpreting environmental magnetic proxies for magnetite/maghemite abundances in terms of anthropogenic loads. This is especially the case in southern European cities where a steady supply of north African dust occurs throughout most of the year. Our results show a good correlation between hematite abundances and geochemical proxies for north African dust, which collectively delineate broad maxima during the summer and large peaks during distinctive dust breakouts. Thus, environmental magnetic proxies of hematite abundances can be used to monitor the contribution of natural sources to atmospheric deposition.
KW - Atmospheric deposition
KW - Environmental magnetism
KW - North African dust
KW - Particulate matter
KW - Pollution
KW - Spain
UR - http://www.scopus.com/inward/record.url?scp=85109445406&partnerID=8YFLogxK
U2 - 10.1016/j.atmosenv.2021.118568
DO - 10.1016/j.atmosenv.2021.118568
M3 - Article
SN - 1352-2310
VL - 261
JO - Atmospheric Environment
JF - Atmospheric Environment
M1 - 118568
ER -