Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards

Joan Garcia-Porta, Iker Irisarri, Martin Kirchner, Ariel Rodríguez, Sebastian Kirchhof, Jason L. Brown, Amy MacLeod, Alexander P. Turner, Faraham Ahmadzadeh, Gonzalo Albaladejo, Jelka Crnobrnja-Isailovic, Ignacio De la Riva, Adnane Fawzi, Pedro Galán, Bayram Göçmen, D. James Harris, Octavio Jiménez-Robles, Ulrich Joger, Olga Jovanović Glavaš, Mert KarışGiannina Koziel, Sven Künzel, Mariana Lyra, Donald Miles, Manuel Nogales, Mehmet Anıl Oğuz, Panayiotis Pafilis, Loïs Rancilhac, Noemí Rodríguez, Benza Rodríguez Concepción, Eugenia Sanchez, Daniele Salvi, Tahar Slimani, Abderrahim S’khifa, Ali Turk Qashqaei, Anamarija Žagar, Alan Lemmon, Emily Moriarty Lemmon, Miguel Angel Carretero, Salvador Carranza, Hervé Philippe, Barry Sinervo, Johannes Müller, Miguel Vences*, Katharina C. Wollenberg Valero

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    110 Citations (Scopus)

    Abstract

    Climatic conditions changing over time and space shape the evolution of organisms at multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied by an increasing disparity among occupied bioclimatic niches, especially in the last 10 Ma, during a period of progressive global cooling. Temperate species also underwent a genome-wide slowdown in molecular substitution rates compared to tropical and desert-adapted lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic parameters, indicating physiological adaptations to climate. Tropical, but also some populations of cool-adapted species experience maximum temperatures close to their preferred temperatures. We hypothesize these species-specific physiological preferences may constitute a handicap to prevail under rapid global warming, and contribute to explaining local lizard extinctions in cool and humid climates.

    Original languageEnglish
    Article number4077
    JournalNature Communications
    Volume10
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2019

    Fingerprint

    Dive into the research topics of 'Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards'. Together they form a unique fingerprint.

    Cite this