EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency

Muhammad Faisal, Ijaz Akhter, Mohsen Ali, Richard Hartley

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    21 Citations (Scopus)

    Abstract

    The existing approaches for salient motion segmentation are unable to explicitly learn geometric cues and often give false detections on prominent static objects. We exploit multiview geometric constraints to avoid such shortcomings. To handle the nonrigid background like a sea, we also propose a robust fusion mechanism between motion and appearance-based features. We find dense trajectories, covering every pixel in the video, and propose trajectory-based epipolar distances to distinguish between background and foreground regions. Trajectory epipolar distances are dataindependent and can be readily computed given a few features' correspondences between the images. We show that by combining epipolar distances with optical flow, a powerful motion network can be learned. Enabling the network to leverage both of these features, we propose a simple mechanism, we call input-dropout. Comparing the motion-only networks, we outperform the previous state of the art on DAVIS-2016 dataset by 5.2% in the mean IoU score. By robustly fusing our motion network with an appearance network using the input-dropout mechanism, we also outperform the previous methods on DAVIS-2016, 2017 and Segtrackv2 dataset.

    Original languageEnglish
    Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages1873-1882
    Number of pages10
    ISBN (Electronic)9781728165530
    DOIs
    Publication statusPublished - Mar 2020
    Event2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, United States
    Duration: 1 Mar 20205 Mar 2020

    Publication series

    NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

    Conference

    Conference2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
    Country/TerritoryUnited States
    CitySnowmass Village
    Period1/03/205/03/20

    Fingerprint

    Dive into the research topics of 'EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency'. Together they form a unique fingerprint.

    Cite this