Estimating monthly total nitrogen concentration in streams by using artificial neural network

Bin He*, Taikan Oki, Fubao Sun, Daisuke Komori, Shinjiro Kanae, Yi Wang, Hyungjun Kim, Dai Yamazaki

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    65 Citations (Scopus)

    Abstract

    Artificial Neural Network (ANN) is a flexible and popular tool for predicting the non-linear behavior in the environmental system. Here, the feed-forward ANN model was used to investigate the relationship among the land use, fertilizer, and hydrometerological conditions in 59 river basins over Japan and then applied to estimate the monthly river total nitrogen concentration (TNC). It was shown by the sensitivity analysis, that precipitation, temperature, river discharge, forest area and urban area have high relationships with TNC. The ANN structure having eight inputs and one hidden layer with seven nodes gives the best estimate of TNC. The 1:1 scatter plots of predicted versus measured TNC were closely aligned and provided coefficients of errors of 0.98 and 0.93 for ANNs calibration and validation, respectively. From the results obtained, the ANN model gave satisfactory predictions of stream TNC and appears to be a useful tool for prediction of TNC in Japanese streams. It indicates that the ANN model was able to provide accurate estimates of nitrogen concentration in streams. Its application to such environmental data will encourage further studies on prediction of stream TNC in ungauged rivers and provide a useful tool for water resource and environment managers to obtain a quick preliminary assessment of TNC variations.

    Original languageEnglish
    Pages (from-to)172-177
    Number of pages6
    JournalJournal of Environmental Management
    Volume92
    Issue number1
    DOIs
    Publication statusPublished - Jan 2011

    Fingerprint

    Dive into the research topics of 'Estimating monthly total nitrogen concentration in streams by using artificial neural network'. Together they form a unique fingerprint.

    Cite this