Evidence for shear heating, Musgrave Block, central Australia

A. Camacho*, I. McDougall, R. Armstrong, J. Braun

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    55 Citations (Scopus)

    Abstract

    The phenomenon of shear-heating is generally difficult to recognise from petrologic evidence alone. Establishing that shear zones attain higher temperatures than the surrounding country rocks requires independent evidence for temperature gradients. In the Musgrave Block, central Australia, there is a clear spatial association between shear zones and interpreted elevated temperatures. Eclogite facies shear zones that formed at ~ 550 Ma record temperatures of ~650-700°C. Outside the high-pressure shear zones, minerals with low closure temperatures such as biotite (~450°C in the 40Ar-39Ar and Rb-Sr systems), preserve ages >800 Ma, suggesting that these rocks did not experience temperatures greater than about 450°C at ~550 Ma for any extended period. Thus, the shear zones record temperatures that are ~200°C higher than the surrounding country rocks. Simple calculations show that the combination of relatively high shear stresses (~100 MPa) and high strain rates (~10-11 s-1) for short durations (<1 Ma) can account for the observed apparent temperature variations. The evidence indicates that shear heating is the dominant mechanism for localised temperature increases in the shear zones, while the country rock remained at relatively lower temperatures.

    Original languageEnglish
    Pages (from-to)1007-1013
    Number of pages7
    JournalJournal of Structural Geology
    Volume23
    Issue number6-7
    DOIs
    Publication statusPublished - Jun 2001

    Fingerprint

    Dive into the research topics of 'Evidence for shear heating, Musgrave Block, central Australia'. Together they form a unique fingerprint.

    Cite this