Evolution of supergene families associated with insecticide resistance

Hilary Ranson, Charles Claudianos, Federica Ortelli, Christelle Abgrall, Janet Hemingway, Maria V. Sharakhova, Maria F. Unger, Frank H. Collins, René Feyereisen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

502 Citations (Scopus)


The emergence of insecticide resistance in the mosquito poses a serious threat to the efficacy of many malaria control programs. We have searched the Anopheles gambiae genome for members of the three major enzyme families - the carboxylesterases, glutathione transferases, and cytochrome P450s - that are primarily responsible for metabolic resistance to insecticides. A comparative genomic analysis with Drosophila melanogaster reveals that a considerable expansion of these supergene families has occurred in the mosquito. Low gene orthology and little chromosomal synteny paradoxically contrast the easily identified orthologous groups of genes presumably seeded by common ancestors. In A. gambiae, the independent expansion of paralogous genes is mainly a consequence of the formation of clusters among locally duplicated genes. These expansions may reflect the functional diversification of supergene families consistent with major differences in the life history and ecology of these organisms. These data provide a basis for identifying the resistance-associated enzymes within these families. This will enable the resistance status of mosquitoes, flies, and possibly other holometabolous insects to be monitored. The analyses also provide the means for identifying previously unknown molecules involved in fundamental biological processes such as development.

Original languageEnglish
Pages (from-to)179-181
Number of pages3
Issue number5591
Publication statusPublished - 4 Oct 2002
Externally publishedYes


Dive into the research topics of 'Evolution of supergene families associated with insecticide resistance'. Together they form a unique fingerprint.

Cite this