Abstract
Spontaneous four wave mixing (FWM) in photonic crystal fibre (PCF) is a promising approach to improved sources of photon pairs for quantum information applications. When pumped by a bright pulsed laser, the χ3 nonlinearity of silica can produce correlated photons between a signal and idler wavelength equally spaced above and below the pump in frequency [1]. In PCF, the microstructure surrounding the silica core can be chosen to engineer the dispersion of the fibre, which allows control of the phase-matched signal and idler wavelengths, and even over the degree of spectral correlation between signal and idler - in particular, avoiding all spectral correlation can result in heralded photons in an intrinsically pure quantum state, without the usual need for lossy filtering [2]. Other advantages of PCF include a high brightness with moderate pump power due to the small guided mode area and long interaction length, and good coupling efficiency to single mode fibre for detection because the photons are generated in a similar mode shape.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Event | 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013 - Munich, Germany Duration: 12 May 2013 → 16 May 2013 |
Conference
Conference | 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 12/05/13 → 16/05/13 |