Experimental characterization of universal one-way quantum computing

B. A. Bell*, M. S. Tame, A. S. Clark, R. W. Nock, W. J. Wadsworth, J. G. Rarity

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

We report the characterization of a universal set of logic gates for one-way quantum computing using a four-photon 'star' cluster state generated by fusing photons from two independent photonic crystal fibre sources. We obtain a fidelity for the cluster state of 0.66 ± 0.01 with respect to the ideal case. We perform quantum process tomography to completely characterize a controlled-NOT, Hadamard and T gate all on the same compact entangled resource. Together, these operations make up a universal set of gates such that arbitrary quantum logic can be efficiently constructed from combinations of them. We find process fidelities with respect to the ideal cases of 0.64 ± 0.01 for the CNOT, 0.67 ± 0.03 for the Hadamard and 0.76 ± 0.04 for the T gate. The characterization of these gates enables the simulation of larger protocols and algorithms. As a basic example, we simulate a Swap gate consisting of three concatenated CNOT gates. Our work provides some pragmatic insights into the prospects for building up to a fully scalable and fault-tolerant one-way quantum computer with photons in realistic conditions.

Original languageEnglish
Article number053030
JournalNew Journal of Physics
Volume15
DOIs
Publication statusPublished - May 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Experimental characterization of universal one-way quantum computing'. Together they form a unique fingerprint.

Cite this