TY - JOUR
T1 - Experimental evidence for extra proton exchange in ribulose 1,5-bisphosphate carboxylase/oxygenase catalysis
AU - Bathellier, Camille
AU - Tcherkez, Guillaume
N1 - Publisher Copyright:
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2022
Y1 - 2022
N2 - Despite considerable advances in the past 50 y, the mechanism of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalysis is still not well understood. In particular, the movement and exchange of protons within the active site is not well documented: typically, kinetics of H exchange during the first steps of catalysis, i.e. abstraction of the H3 atom of ribulose 1,5-bisphosphate (RuBP) and enolization, are not clearly established. Here, we took advantage of reaction assays run in heavy water (2H2O) to monitor the appearance of deuterated RuBP and deuterated products (3-phosphoglycerate and 2-phosphoglycolate) with exact mass LC-MS. Enolization was reversible such that de-enolization generated not only monodeuterated RuBP (2H-[H-3]-ribulose 1,5-bisphosphate) but also dideuterated RuBP (2H2-[H-3,O-3]-ribulose 1,5-bisphosphate). Carboxylation yielded about one half deuterated 3-phosphoglycerate (2H-[H-2]-3-phosphoglycerate) and also a small proportion of dideuterated 3-phosphoglycerate (2H2-[H-2,O-2]-3-phosphoglycerate). Oxygenation generated a small amount of monodeuterated, but no dideuterated, products. (Di)deuterated isotopologue abundance depended negatively on gas concentration. We conclude that in addition to the first step of proton exchange at H3 occurring before gas addition (and thus influenced by the competition between de-enolization and gas addition), there is another proton exchange step between solvent water, active site residues, and the 2,3-enediol(ate) leading to deuterated OH groups in products.
AB - Despite considerable advances in the past 50 y, the mechanism of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalysis is still not well understood. In particular, the movement and exchange of protons within the active site is not well documented: typically, kinetics of H exchange during the first steps of catalysis, i.e. abstraction of the H3 atom of ribulose 1,5-bisphosphate (RuBP) and enolization, are not clearly established. Here, we took advantage of reaction assays run in heavy water (2H2O) to monitor the appearance of deuterated RuBP and deuterated products (3-phosphoglycerate and 2-phosphoglycolate) with exact mass LC-MS. Enolization was reversible such that de-enolization generated not only monodeuterated RuBP (2H-[H-3]-ribulose 1,5-bisphosphate) but also dideuterated RuBP (2H2-[H-3,O-3]-ribulose 1,5-bisphosphate). Carboxylation yielded about one half deuterated 3-phosphoglycerate (2H-[H-2]-3-phosphoglycerate) and also a small proportion of dideuterated 3-phosphoglycerate (2H2-[H-2,O-2]-3-phosphoglycerate). Oxygenation generated a small amount of monodeuterated, but no dideuterated, products. (Di)deuterated isotopologue abundance depended negatively on gas concentration. We conclude that in addition to the first step of proton exchange at H3 occurring before gas addition (and thus influenced by the competition between de-enolization and gas addition), there is another proton exchange step between solvent water, active site residues, and the 2,3-enediol(ate) leading to deuterated OH groups in products.
KW - Rubisco
KW - carboxylation
KW - catalysis
KW - isotope
KW - kinetics
KW - oxygenation
UR - http://www.scopus.com/inward/record.url?scp=85125708418&partnerID=8YFLogxK
U2 - 10.1080/19420889.2022.2039431
DO - 10.1080/19420889.2022.2039431
M3 - Article
SN - 1942-0889
VL - 15
SP - 68
EP - 74
JO - Communicative and Integrative Biology
JF - Communicative and Integrative Biology
IS - 1
ER -