TY - GEN
T1 - Exploiting block deordering for improving planners efficiency
AU - Chrpa, Lukaš
AU - Siddiqui, Fazlul Hasan
PY - 2015
Y1 - 2015
N2 - Capturing and exploiting structural knowledge of planning problems has shown to be a successful strategy for making the planning process more efficient. Plans can be decomposed into its constituent coherent subplans, called blocks, that encapsulate some effects and preconditions, reducing interference and thus allowing more deordering of plans. According to the nature of blocks, they can be straightforwardly transformed into useful macro-operators (shortly, "macros"). Macros are well known and widely studied kind of structural knowledge because they can be easily encoded in the domain model and thus exploited by standard planning engines. In this paper, we introduce a method, called BLOMA, that learns domain-specific macros from plans, decomposed into "macro-blocks" which are extensions of blocks, utilising structural knowledge they capture. In contrast to existing macro learning techniques, macro-blocks are often able to capture high-level activities that form a basis for useful longer macros (i.e. those consisting of more original operators). Our method is evaluated by using the IPC benchmarks with state-of-the-art planning engines, and shows considerable improvement in many cases.
AB - Capturing and exploiting structural knowledge of planning problems has shown to be a successful strategy for making the planning process more efficient. Plans can be decomposed into its constituent coherent subplans, called blocks, that encapsulate some effects and preconditions, reducing interference and thus allowing more deordering of plans. According to the nature of blocks, they can be straightforwardly transformed into useful macro-operators (shortly, "macros"). Macros are well known and widely studied kind of structural knowledge because they can be easily encoded in the domain model and thus exploited by standard planning engines. In this paper, we introduce a method, called BLOMA, that learns domain-specific macros from plans, decomposed into "macro-blocks" which are extensions of blocks, utilising structural knowledge they capture. In contrast to existing macro learning techniques, macro-blocks are often able to capture high-level activities that form a basis for useful longer macros (i.e. those consisting of more original operators). Our method is evaluated by using the IPC benchmarks with state-of-the-art planning engines, and shows considerable improvement in many cases.
UR - http://www.scopus.com/inward/record.url?scp=84949781492&partnerID=8YFLogxK
M3 - Conference contribution
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1537
EP - 1543
BT - IJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
A2 - Wooldridge, Michael
A2 - Yang, Qiang
PB - International Joint Conferences on Artificial Intelligence
T2 - 24th International Joint Conference on Artificial Intelligence, IJCAI 2015
Y2 - 25 July 2015 through 31 July 2015
ER -