Exploratory analysis of high-throughput metabolomic data

Chalini D. Wijetunge, Zhaoping Li, Isaam Saeed, Jairus Bowne, Arthur L. Hsu, Ute Roessner, Antony Bacic, Saman K. Halgamuge

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

In order to make sense of the sheer volume of metabolomic data that can be generated using current technology, robust data analysis tools are essential. We propose the use of the growing self-organizing map (GSOM) algorithm and by doing so demonstrate that a deeper analysis of metabolomics data is possible in comparison to the widely used batch-learning self-organizing map, hierarchical cluster analysis and partitioning around medoids algorithms on simulated and real-world time-course metabolomic datasets. We then applied GSOM to a recently published dataset representing metabolome response patterns of three wheat cultivars subject to a field simulated cyclic drought stress. This novel and information rich analysis provided by the proposed GSOM framework can be easily extended to other high-throughput metabolomics studies.

Original languageEnglish
Pages (from-to)1311-1320
Number of pages10
JournalMetabolomics
Volume9
Issue number6
DOIs
Publication statusPublished - Dec 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Exploratory analysis of high-throughput metabolomic data'. Together they form a unique fingerprint.

Cite this