TY - GEN
T1 - Exponential family graph matching and ranking
AU - Petterson, James
AU - Caetano, Tibério S.
AU - McAuley, Julian J.
AU - Yu, Jin
PY - 2009
Y1 - 2009
N2 - We present a method for learning max-weight matching predictors in bipartite graphs. The method consists of performing maximum a posteriori estimation in exponential families with sufficient statistics that encode permutations and data features. Although inference is in general hard, we show that for one very relevant application-document ranking-exact inference is efficient. For general model instances, an appropriate sampler is readily available. Contrary to existing max-margin matching models, our approach is statistically consistent and, in addition, experiments with increasing sample sizes indicate superior improvement over such models. We apply the method to graph matching in computer vision as well as to a standard benchmark dataset for learning document ranking, in which we obtain state-of-the-art results, in particular improving on max-margin variants. The drawback of this method with respect to max-margin alternatives is its runtime for large graphs, which is comparatively high.
AB - We present a method for learning max-weight matching predictors in bipartite graphs. The method consists of performing maximum a posteriori estimation in exponential families with sufficient statistics that encode permutations and data features. Although inference is in general hard, we show that for one very relevant application-document ranking-exact inference is efficient. For general model instances, an appropriate sampler is readily available. Contrary to existing max-margin matching models, our approach is statistically consistent and, in addition, experiments with increasing sample sizes indicate superior improvement over such models. We apply the method to graph matching in computer vision as well as to a standard benchmark dataset for learning document ranking, in which we obtain state-of-the-art results, in particular improving on max-margin variants. The drawback of this method with respect to max-margin alternatives is its runtime for large graphs, which is comparatively high.
UR - http://www.scopus.com/inward/record.url?scp=84863338233&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781615679119
T3 - Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
SP - 1455
EP - 1463
BT - Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
PB - Neural Information Processing Systems
T2 - 23rd Annual Conference on Neural Information Processing Systems, NIPS 2009
Y2 - 7 December 2009 through 10 December 2009
ER -