Abstract
Synthesis of magnetic Fe3O4/SiO2/graphene-CdTe QDs/chitosan nanocomposites (FGQCs) is investigated with respect to their potential of improving the drug loading content above that of magnetic/fluorescent bifunctional nanocomposites. To evaluate the performance of the FGQCs, their surface morphology was thoroughly assessed. The in vitro interaction between the FGQCs and heptoma cell line smmc-7721 cells was observed for the first time by TEM ultrathin section imaging. At an excitation wavelength of 365nm, the graphene-QDs exhibit a strong luminescence in aqueous environments. The loading content and entrapment efficiency of the FGQCs were 70% and 50%, respectively. The cytotoxicity of this novel drug delivery system was evaluated in vitro using heptoma cell line smmc-7721 and quantified by the 3-(4,5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results show that FGQCs are a promising new multifunctional material for drug delivery in biological and medical applications.
Original language | English |
---|---|
Pages (from-to) | 466-472 |
Number of pages | 7 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 117 |
DOIs | |
Publication status | Published - 1 May 2014 |