TY - GEN
T1 - Fast and Differentiable Message Passing on Pairwise Markov Random Fields
AU - Xu, Zhiwei
AU - Ajanthan, Thalaiyasingam
AU - Hartley, Richard
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - Despite the availability of many Markov Random Field (MRF) optimization algorithms, their widespread usage is currently limited due to imperfect MRF modelling arising from hand-crafted model parameters and the selection of inferior inference algorithm. In addition to differentiability, the two main aspects that enable learning these model parameters are the forward and backward propagation time of the MRF optimization algorithm and its inference capabilities. In this work, we introduce two fast and differentiable message passing algorithms, namely, Iterative Semi-Global Matching Revised (ISGMR) and Parallel Tree-Reweighted Message Passing (TRWP) which are greatly sped up on a GPU by exploiting massive parallelism. Specifically, ISGMR is an iterative and revised version of the standard SGM for general pairwise MRFs with improved optimization effectiveness, and TRWP is a highly parallel version of Sequential TRW (TRWS) for faster optimization. Our experiments on the standard stereo and denoising benchmarks demonstrated that ISGMR and TRWP achieve much lower energies than SGM and Mean-Field (MF), and TRWP is two orders of magnitude faster than TRWS without losing effectiveness in optimization. We further demonstrated the effectiveness of our algorithms on end-to-end learning for semantic segmentation. Notably, our CUDA implementations are at least 7 and 700 times faster than PyTorch GPU implementations for forward and backward propagation respectively, enabling efficient end-to-end learning with message passing.
AB - Despite the availability of many Markov Random Field (MRF) optimization algorithms, their widespread usage is currently limited due to imperfect MRF modelling arising from hand-crafted model parameters and the selection of inferior inference algorithm. In addition to differentiability, the two main aspects that enable learning these model parameters are the forward and backward propagation time of the MRF optimization algorithm and its inference capabilities. In this work, we introduce two fast and differentiable message passing algorithms, namely, Iterative Semi-Global Matching Revised (ISGMR) and Parallel Tree-Reweighted Message Passing (TRWP) which are greatly sped up on a GPU by exploiting massive parallelism. Specifically, ISGMR is an iterative and revised version of the standard SGM for general pairwise MRFs with improved optimization effectiveness, and TRWP is a highly parallel version of Sequential TRW (TRWS) for faster optimization. Our experiments on the standard stereo and denoising benchmarks demonstrated that ISGMR and TRWP achieve much lower energies than SGM and Mean-Field (MF), and TRWP is two orders of magnitude faster than TRWS without losing effectiveness in optimization. We further demonstrated the effectiveness of our algorithms on end-to-end learning for semantic segmentation. Notably, our CUDA implementations are at least 7 and 700 times faster than PyTorch GPU implementations for forward and backward propagation respectively, enabling efficient end-to-end learning with message passing.
UR - http://www.scopus.com/inward/record.url?scp=85103247003&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-69535-4_32
DO - 10.1007/978-3-030-69535-4_32
M3 - Conference contribution
SN - 9783030695347
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 523
EP - 540
BT - Computer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers
A2 - Ishikawa, Hiroshi
A2 - Liu, Cheng-Lin
A2 - Pajdla, Tomas
A2 - Shi, Jianbo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 15th Asian Conference on Computer Vision, ACCV 2020
Y2 - 30 November 2020 through 4 December 2020
ER -