TY - JOUR
T1 - Fast and universal estimation of latent variable models using extended variational approximations
AU - Korhonen, Pekka
AU - Hui, Francis K.C.
AU - Niku, Jenni
AU - Taskinen, Sara
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2023/2
Y1 - 2023/2
N2 - Generalized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ecology. One of the main features of GLLVMs is their capacity to handle a variety of responses types, such as (overdispersed) counts, binomial and (semi-)continuous responses, and proportions data. On the other hand, the inclusion of unobserved latent variables poses a major computational challenge, as the resulting marginal likelihood function involves an intractable integral for non-normally distributed responses. This has spurred research into a number of approximation methods to overcome this integral, with a recent and particularly computationally scalable one being that of variational approximations (VA). However, research into the use of VA for GLLVMs has been hampered by the fact that fully closed-form variational lower bounds have only been obtained for certain combinations of response distributions and link functions. In this article, we propose an extended variational approximations (EVA) approach which widens the set of VA-applicable GLLVMs dramatically. EVA draws inspiration from the underlying idea behind the Laplace approximation: by replacing the complete-data likelihood function with its second order Taylor approximation about the mean of the variational distribution, we can obtain a fully closed-form approximation to the marginal likelihood of the GLLVM for any response type and link function. Through simulation studies and an application to a species community of testate amoebae, we demonstrate how EVA results in a “universal” approach to fitting GLLVMs, which remains competitive in terms of estimation and inferential performance relative to both standard VA (where any intractable integrals are either overcome through reparametrization or quadrature) and a Laplace approximation approach, while being computationally more scalable than both methods in practice.
AB - Generalized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ecology. One of the main features of GLLVMs is their capacity to handle a variety of responses types, such as (overdispersed) counts, binomial and (semi-)continuous responses, and proportions data. On the other hand, the inclusion of unobserved latent variables poses a major computational challenge, as the resulting marginal likelihood function involves an intractable integral for non-normally distributed responses. This has spurred research into a number of approximation methods to overcome this integral, with a recent and particularly computationally scalable one being that of variational approximations (VA). However, research into the use of VA for GLLVMs has been hampered by the fact that fully closed-form variational lower bounds have only been obtained for certain combinations of response distributions and link functions. In this article, we propose an extended variational approximations (EVA) approach which widens the set of VA-applicable GLLVMs dramatically. EVA draws inspiration from the underlying idea behind the Laplace approximation: by replacing the complete-data likelihood function with its second order Taylor approximation about the mean of the variational distribution, we can obtain a fully closed-form approximation to the marginal likelihood of the GLLVM for any response type and link function. Through simulation studies and an application to a species community of testate amoebae, we demonstrate how EVA results in a “universal” approach to fitting GLLVMs, which remains competitive in terms of estimation and inferential performance relative to both standard VA (where any intractable integrals are either overcome through reparametrization or quadrature) and a Laplace approximation approach, while being computationally more scalable than both methods in practice.
KW - Generalized linear latent variable models
KW - Laplace approximation
KW - Multi-response data
KW - Multivariate abundance data
KW - Ordination
KW - Variational approximations
UR - http://www.scopus.com/inward/record.url?scp=85144867501&partnerID=8YFLogxK
U2 - 10.1007/s11222-022-10189-w
DO - 10.1007/s11222-022-10189-w
M3 - Article
SN - 0960-3174
VL - 33
JO - Statistics and Computing
JF - Statistics and Computing
IS - 1
M1 - 26
ER -