Fast image reconstruction with an event camera

Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick Barnes, Robert E. Mahony, Davide Scaramuzza

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    146 Citations (Scopus)

    Abstract

    Event cameras are powerful new sensors able to capture high dynamic range with microsecond temporal resolution and no motion blur. Their strength is detecting brightness changes (called events) rather than capturing direct brightness images; however, algorithms can be used to convert events into usable image representations for applications such as classification. Previous works rely on hand-crafted spatial and temporal smoothing techniques to reconstruct images from events. State-of-the-art video reconstruction has recently been achieved using neural networks that are large (10M parameters) and computationally expensive, requiring 30ms for a forward-pass at 640 × 480 resolution on a modern GPU. We propose a novel neural network architecture for video reconstruction from events that is smaller (38k vs. 10M parameters) and faster (10ms vs. 30ms) than state-of-the-art with minimal impact to performance.

    Original languageEnglish
    Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages156-163
    Number of pages8
    ISBN (Electronic)9781728165530
    DOIs
    Publication statusPublished - Mar 2020
    Event2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, United States
    Duration: 1 Mar 20205 Mar 2020

    Publication series

    NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

    Conference

    Conference2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
    Country/TerritoryUnited States
    CitySnowmass Village
    Period1/03/205/03/20

    Fingerprint

    Dive into the research topics of 'Fast image reconstruction with an event camera'. Together they form a unique fingerprint.

    Cite this