TY - GEN
T1 - Feature driven and point process approaches for popularity prediction
AU - Mishra, Swapnil
AU - Rizoiu, Marian Andrei
AU - Xie, Lexing
N1 - Publisher Copyright:
© 2016 ACM.
PY - 2016/10/24
Y1 - 2016/10/24
N2 - Predicting popularity, or the total volume of information outbreaks, is an important subproblem for understanding collective behavior in networks. Each of the two main types of recent approaches to the problem, feature-driven and generative models, have desired qualities and clear limitations. This paper bridges the gap between these solutions with a new hybrid approach and a new performance benchmark. We model each social cascade with a marked Hawkes self-exciting point process, and estimate the content virality, memory decay, and user influence. We then learn a predictive layer for popularity prediction using a collection of cascade history. To our surprise, Hawkes process with a predictive overlay outperform recent feature-driven and generative approaches on existing tweet data [44] and a new public benchmark on news tweets. We also found that a basic set of user features and event time summary statistics performs competitively in both classification and regression tasks, and that adding point process information to the feature set further improves predictions. From these observations, we argue that future work on popularity prediction should compare across feature-driven and generative modeling approaches in both classification and regression tasks.
AB - Predicting popularity, or the total volume of information outbreaks, is an important subproblem for understanding collective behavior in networks. Each of the two main types of recent approaches to the problem, feature-driven and generative models, have desired qualities and clear limitations. This paper bridges the gap between these solutions with a new hybrid approach and a new performance benchmark. We model each social cascade with a marked Hawkes self-exciting point process, and estimate the content virality, memory decay, and user influence. We then learn a predictive layer for popularity prediction using a collection of cascade history. To our surprise, Hawkes process with a predictive overlay outperform recent feature-driven and generative approaches on existing tweet data [44] and a new public benchmark on news tweets. We also found that a basic set of user features and event time summary statistics performs competitively in both classification and regression tasks, and that adding point process information to the feature set further improves predictions. From these observations, we argue that future work on popularity prediction should compare across feature-driven and generative modeling approaches in both classification and regression tasks.
KW - Cascade prediction
KW - Information diffusion
KW - Self-exciting point process
KW - Social media
UR - http://www.scopus.com/inward/record.url?scp=84996504018&partnerID=8YFLogxK
U2 - 10.1145/2983323.2983812
DO - 10.1145/2983323.2983812
M3 - Conference contribution
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1069
EP - 1078
BT - CIKM 2016 - Proceedings of the 2016 ACM Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 25th ACM International Conference on Information and Knowledge Management, CIKM 2016
Y2 - 24 October 2016 through 28 October 2016
ER -