TY - GEN
T1 - Few-Shot Action Recognition with Permutation-Invariant Attention
AU - Zhang, Hongguang
AU - Zhang, Li
AU - Qi, Xiaojuan
AU - Li, Hongdong
AU - Torr, Philip H.S.
AU - Koniusz, Piotr
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Many few-shot learning models focus on recognising images. In contrast, we tackle a challenging task of few-shot action recognition from videos. We build on a C3D encoder for spatio-temporal video blocks to capture short-range action patterns. Such encoded blocks are aggregated by permutation-invariant pooling to make our approach robust to varying action lengths and long-range temporal dependencies whose patterns are unlikely to repeat even in clips of the same class. Subsequently, the pooled representations are combined into simple relation descriptors which encode so-called query and support clips. Finally, relation descriptors are fed to the comparator with the goal of similarity learning between query and support clips. Importantly, to re-weight block contributions during pooling, we exploit spatial and temporal attention modules and self-supervision. In naturalistic clips (of the same class) there exists a temporal distribution shift–the locations of discriminative temporal action hotspots vary. Thus, we permute blocks of a clip and align the resulting attention regions with similarly permuted attention regions of non-permuted clip to train the attention mechanism invariant to block (and thus long-term hotspot) permutations. Our method outperforms the state of the art on the HMDB51, UCF101, miniMIT datasets.
AB - Many few-shot learning models focus on recognising images. In contrast, we tackle a challenging task of few-shot action recognition from videos. We build on a C3D encoder for spatio-temporal video blocks to capture short-range action patterns. Such encoded blocks are aggregated by permutation-invariant pooling to make our approach robust to varying action lengths and long-range temporal dependencies whose patterns are unlikely to repeat even in clips of the same class. Subsequently, the pooled representations are combined into simple relation descriptors which encode so-called query and support clips. Finally, relation descriptors are fed to the comparator with the goal of similarity learning between query and support clips. Importantly, to re-weight block contributions during pooling, we exploit spatial and temporal attention modules and self-supervision. In naturalistic clips (of the same class) there exists a temporal distribution shift–the locations of discriminative temporal action hotspots vary. Thus, we permute blocks of a clip and align the resulting attention regions with similarly permuted attention regions of non-permuted clip to train the attention mechanism invariant to block (and thus long-term hotspot) permutations. Our method outperforms the state of the art on the HMDB51, UCF101, miniMIT datasets.
UR - http://www.scopus.com/inward/record.url?scp=85097379613&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-58558-7_31
DO - 10.1007/978-3-030-58558-7_31
M3 - Conference contribution
SN - 9783030585570
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 525
EP - 542
BT - Computer Vision – ECCV 2020 - 16th European Conference, Proceedings
A2 - Vedaldi, Andrea
A2 - Bischof, Horst
A2 - Brox, Thomas
A2 - Frahm, Jan-Michael
PB - Springer Science and Business Media Deutschland GmbH
T2 - 16th European Conference on Computer Vision, ECCV 2020
Y2 - 23 August 2020 through 28 August 2020
ER -