TY - JOUR
T1 - First-order reversal curve diagrams
T2 - A new tool for characterizing the magnetic properties of natural samples
AU - Roberts, Andrew P.
AU - Pike, Christopher R.
AU - Verosub, Kenneth L.
PY - 2000/12/10
Y1 - 2000/12/10
N2 - Paleomagnetic and environmental magnetic studies are commonly conducted on samples containing mixtures of magnetic minerals and/or grain sizes. Major hysteresis loops are routinely used to provide information about variations in magnetic mineralogy and grain size. Standard hysteresis parameters, however, provide a measure of the bulk magnetic properties, rather than enabling discrimination between the magnetic components that contribute to the magnetization of a sample. By contrast, first-order reversal curve (FORC) diagrams, which we describe here, can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage. We use magnetization data from a class of partial hysteresis curves known as first-order reversal curves (FORCs) and transform the data into contour plots (FORC diagrams) of a two-dimensional distribution function. The FORC distribution provides information about particle switching fields and local interaction fields for the assemblage of magnetic particles within a sample. Superparamagnetic, single-domain, and multidomain grains, as well as magnetostatic interactions, all produce characteristic and distinct manifestations on a FORC diagram. Our results indicate that FORC diagrams can be used to characterize a wide range of natural samples and that they provide more detailed information about the magnetic particles in a sample than standard interpretational schemes which employ hysteresis data. It will be necessary to further develop the technique to enable a more quantitative interpretation of magnetic assemblages; however, even qualitative interpretation of FORC diagrams removes many of the ambiguities that are inherent to hysteresis data.
AB - Paleomagnetic and environmental magnetic studies are commonly conducted on samples containing mixtures of magnetic minerals and/or grain sizes. Major hysteresis loops are routinely used to provide information about variations in magnetic mineralogy and grain size. Standard hysteresis parameters, however, provide a measure of the bulk magnetic properties, rather than enabling discrimination between the magnetic components that contribute to the magnetization of a sample. By contrast, first-order reversal curve (FORC) diagrams, which we describe here, can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage. We use magnetization data from a class of partial hysteresis curves known as first-order reversal curves (FORCs) and transform the data into contour plots (FORC diagrams) of a two-dimensional distribution function. The FORC distribution provides information about particle switching fields and local interaction fields for the assemblage of magnetic particles within a sample. Superparamagnetic, single-domain, and multidomain grains, as well as magnetostatic interactions, all produce characteristic and distinct manifestations on a FORC diagram. Our results indicate that FORC diagrams can be used to characterize a wide range of natural samples and that they provide more detailed information about the magnetic particles in a sample than standard interpretational schemes which employ hysteresis data. It will be necessary to further develop the technique to enable a more quantitative interpretation of magnetic assemblages; however, even qualitative interpretation of FORC diagrams removes many of the ambiguities that are inherent to hysteresis data.
UR - http://www.scopus.com/inward/record.url?scp=0034479402&partnerID=8YFLogxK
U2 - 10.1029/2000jb900326
DO - 10.1029/2000jb900326
M3 - Article
SN - 2169-9313
VL - 105
SP - 28461
EP - 28475
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - B12
M1 - 2000JB900326
ER -