Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions

Magdolna Nagy, Gina Perrella, Amanda Dalby, M. Francisca Becerra, Lourdes Garcia Quintanilla, Jeremy A. Pike, Neil V. Morgan, Elizabeth E. Gardiner, Johan W.M. Heemskerk, Lorena Azâ´ Ocar, Juan Francisco Miquel, Diego Mezzano, Steve P. Watson

    Research output: Contribution to journalArticlepeer-review

    39 Citations (Scopus)

    Abstract

    The role of glycoprotein VI (GPVI) in platelets was investigated in 3 families bearing an insertion within the GP6 gene that introduces a premature stop codon prior to the transmembrane domain, leading to expression of a truncated protein in the cytoplasm devoid of the transmembrane region. Western blotting and flow cytometry of GP6hom (homozygous) platelets confirmed loss of the full protein. The level of the Fc receptor g-chain, which associates with GPVI in the membrane, was partially reduced, but expression of other receptors and signaling proteins was not altered. Spreading of platelets on collagen and von Willebrand factor (which supports partial spreading) was abolished in GP6hom platelets, and spreading on uncoated glass was reduced. Anticoagulated whole blood flowed over immobilized collagen or a mixture of von Willebrand factor, laminin, and rhodocytin (noncollagen surface) generated stable platelet aggregates that express phosphatidylserine (PS). Both responses were blocked on the 2 surfaces in GP6hom individuals, but adhesion was not altered. Thrombin generation was partially reduced in GP6hom blood. The frequency of the GP6het (heterozygous) variant in a representative sample of the Chilean population (1212 donors) is 2.9%, indicating that there are ;4000 GP6hom individuals in Chile. These results demonstrate that GPVI supports aggregation and PS exposure under flow on collagen and noncollagen surfaces, but not adhesion. The retention of adhesion may contribute to the mild bleeding diathesis of GP6hom patients and account for why so few of the estimated 4000 GP6hom individuals in Chile have been identified.

    Original languageEnglish
    Pages (from-to)2953-2961
    Number of pages9
    JournalBlood advances
    Volume4
    Issue number13
    DOIs
    Publication statusPublished - 14 Jul 2020

    Fingerprint

    Dive into the research topics of 'Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions'. Together they form a unique fingerprint.

    Cite this