TY - JOUR
T1 - Fold geometry and constitutive behaviour
AU - Hobbs, B.
AU - Mülhaus, H.
AU - Ord, A.
AU - Zhang, Y.
AU - Moresi, L.
PY - 2000
Y1 - 2000
N2 - In this paper we examine the constitutive behaviour of single layered systems and the resulting fold geometries. The classical dominant wavelength treatments of Biot and Ramberg are discussed in terms of current knowledge about non-linear systems, and their work is compared with finite element calculations, which demonstrate that the time constants for buckling amplification versus those for viscous relaxation play a key role in determining fold evolution. For viscous, non-linear (specifically, power law) materi-als, the critical wavelength which is amplified is less than that predicted for a linear-viscous material. For purely viscous materials deforming in three dimensions, two wavelengths are always amplified no matter if the deformation history is biaxial shortening, plane shortening or shortening plus extension in the plane of the layer. These two wavelengths combine to give the impression of superimposed fold systems; in a particular section plane through the fold system this may result in fold system profiles that are a-periodic. Fold growth in elastoviscous materials is found to be extremely strain rate dependent. Elastoviscous materials undergo a spectrum of responses ranging from the domination of homogeneous shortening and weak buckling at relatively low strain rates, to little layer parallel shortening and predominantly buckling deformation at relatively high strain rates (for a given set of physical parameters). Extending our analysis to more complex non-linear materials, we find examples of fold packet evolution in elastoviscous systems that do not lead to periodic fold trains. Finally the effects of microstructure evolution during folding are investigated, which demon-strate the effects of a history dependent rheology.
AB - In this paper we examine the constitutive behaviour of single layered systems and the resulting fold geometries. The classical dominant wavelength treatments of Biot and Ramberg are discussed in terms of current knowledge about non-linear systems, and their work is compared with finite element calculations, which demonstrate that the time constants for buckling amplification versus those for viscous relaxation play a key role in determining fold evolution. For viscous, non-linear (specifically, power law) materi-als, the critical wavelength which is amplified is less than that predicted for a linear-viscous material. For purely viscous materials deforming in three dimensions, two wavelengths are always amplified no matter if the deformation history is biaxial shortening, plane shortening or shortening plus extension in the plane of the layer. These two wavelengths combine to give the impression of superimposed fold systems; in a particular section plane through the fold system this may result in fold system profiles that are a-periodic. Fold growth in elastoviscous materials is found to be extremely strain rate dependent. Elastoviscous materials undergo a spectrum of responses ranging from the domination of homogeneous shortening and weak buckling at relatively low strain rates, to little layer parallel shortening and predominantly buckling deformation at relatively high strain rates (for a given set of physical parameters). Extending our analysis to more complex non-linear materials, we find examples of fold packet evolution in elastoviscous systems that do not lead to periodic fold trains. Finally the effects of microstructure evolution during folding are investigated, which demon-strate the effects of a history dependent rheology.
KW - Constitutive equations
KW - Flow laws
KW - Folds
UR - http://www.scopus.com/inward/record.url?scp=2142800995&partnerID=8YFLogxK
U2 - 10.3809/jvirtex.2000.00014
DO - 10.3809/jvirtex.2000.00014
M3 - Article
AN - SCOPUS:2142800995
SN - 1441-8126
VL - 2
JO - Journal of the Virtual Explorer
JF - Journal of the Virtual Explorer
ER -