TY - JOUR
T1 - Formation of channelized lava flows on an unconfined slope
AU - Kerr, Ross C.
AU - Griffiths, R. W.
AU - Cashman, K. V.
PY - 2006/10/4
Y1 - 2006/10/4
N2 - The formation of channelized lava flows on a wide uniform slope is investigated both theoretically and experimentally. When a lava is released at a constant flow rate from a point source, we predict that it flows both down and across the slope at the same rate in a early time regime before undergoing a transition to a long-time regime where down-slope flow is faster than lateral flow. Eventually, the lateral flow is stopped by the strength of the growing surface crust, and the flow then travels down slope in a channel of constant width. Using scaling analysis, we derive expressions for the final channel width in both flow regimes, as a function of the flow rate, the slope, the density difference driving the flow, the lava viscosity, the thermal diffasivity, and the yield strength of the crust. We also find a dimensionless flow morphology parameter that controls whether the subsequent channel flow occurs in a "mobile crust" regime or in a "tube" regime. These theoretical predictions are in good agreement with laboratory experiments in which polyethylene glycol wax flows down a wide uniform slope under cold water. The theory is also applied to the understanding of the formation of a basaltic sheet flow lobe in Hawaii, which had an estimated crust yield strength of order 6 × 104 Pa. Coyright 2006 by the American Geophysical Union.
AB - The formation of channelized lava flows on a wide uniform slope is investigated both theoretically and experimentally. When a lava is released at a constant flow rate from a point source, we predict that it flows both down and across the slope at the same rate in a early time regime before undergoing a transition to a long-time regime where down-slope flow is faster than lateral flow. Eventually, the lateral flow is stopped by the strength of the growing surface crust, and the flow then travels down slope in a channel of constant width. Using scaling analysis, we derive expressions for the final channel width in both flow regimes, as a function of the flow rate, the slope, the density difference driving the flow, the lava viscosity, the thermal diffasivity, and the yield strength of the crust. We also find a dimensionless flow morphology parameter that controls whether the subsequent channel flow occurs in a "mobile crust" regime or in a "tube" regime. These theoretical predictions are in good agreement with laboratory experiments in which polyethylene glycol wax flows down a wide uniform slope under cold water. The theory is also applied to the understanding of the formation of a basaltic sheet flow lobe in Hawaii, which had an estimated crust yield strength of order 6 × 104 Pa. Coyright 2006 by the American Geophysical Union.
UR - http://www.scopus.com/inward/record.url?scp=33845590978&partnerID=8YFLogxK
U2 - 10.1029/2005JB004225
DO - 10.1029/2005JB004225
M3 - Article
SN - 2169-9313
VL - 111
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 10
M1 - B10206
ER -