TY - JOUR
T1 - Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch
AU - Sharif, Hafiz Rizwan
AU - Abbas, Shabbar
AU - Majeed, Hamid
AU - Safdar, Waseem
AU - Shamoon, Muhammad
AU - Khan, Muhammad Aslam
AU - Shoaib, Muhammad
AU - Raza, Husnain
AU - Haider, Junaid
PY - 2017/9
Y1 - 2017/9
N2 - Preparation of oil-in-water nanoemulsions has emerged as a subject of interest for the encapsulation of lipophilic functional ingredients to increase their stability and activity. In this study, black cumin essential oil nanoemulsions (BCO-NE) using different ratios of essential oil with canola and flax seed oils (ripening inhibitors) were formulated and stabilized with octenyl succinic anhydride (OSA) modified waxy maize starch. The nanoemulsions exhibited monomodal size distributions with mean droplet diameter below 200 nm and zeta potential above -30, indicating a strong electrostatic repulsion between the dispersed oil droplets. Further, during storage (4 weeks at 25 A degrees C +/- 2) emulsions showed shear thinning phenomena and stability towards coalescence. Antimicrobial properties of nanoemulsions were determined by minimum inhibitory concentration and time-kill method against two Gram-positive bacterial (GPB) strains (Bacillus cereus and Listeria monocytogenes). Negatively charged BCO-NE showed prolonged bactericidal activities as compared to pure BCO due to better stability, controlled release and self-assembly with GPB cell membrane followed by destruction of cellular constituents. Our results suggest the application of BCO-NE may be exploited in aqueous food systems for extending the shelf life and other functional properties.
AB - Preparation of oil-in-water nanoemulsions has emerged as a subject of interest for the encapsulation of lipophilic functional ingredients to increase their stability and activity. In this study, black cumin essential oil nanoemulsions (BCO-NE) using different ratios of essential oil with canola and flax seed oils (ripening inhibitors) were formulated and stabilized with octenyl succinic anhydride (OSA) modified waxy maize starch. The nanoemulsions exhibited monomodal size distributions with mean droplet diameter below 200 nm and zeta potential above -30, indicating a strong electrostatic repulsion between the dispersed oil droplets. Further, during storage (4 weeks at 25 A degrees C +/- 2) emulsions showed shear thinning phenomena and stability towards coalescence. Antimicrobial properties of nanoemulsions were determined by minimum inhibitory concentration and time-kill method against two Gram-positive bacterial (GPB) strains (Bacillus cereus and Listeria monocytogenes). Negatively charged BCO-NE showed prolonged bactericidal activities as compared to pure BCO due to better stability, controlled release and self-assembly with GPB cell membrane followed by destruction of cellular constituents. Our results suggest the application of BCO-NE may be exploited in aqueous food systems for extending the shelf life and other functional properties.
KW - Antimicrobial properties
KW - Black cumin essential oil
KW - Nanoemulsions
KW - OSA modified starch
KW - Rheology
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=anu_research_portal_plus2&SrcAuth=WosAPI&KeyUT=WOS:000410851700038&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1007/s13197-017-2800-8
DO - 10.1007/s13197-017-2800-8
M3 - Article
C2 - 28974821
SN - 0022-1155
VL - 54
SP - 3358
EP - 3365
JO - Journal of Food Science and Technology
JF - Journal of Food Science and Technology
IS - 10
ER -