TY - GEN
T1 - Full state feedback control of steam temperature in a once-through direct steam generation receiver powered by a paraboloidal dish
AU - Zapata, José I.
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - DSG plants in a once-through configuration convert water into superheated steam suitable for a steam turbine, with a single pass of the fluid through the receiver. The control problem is to manipulate the feed-water mass flow to maintain a desired steam condition (e.g. temperature) under variable solar radiation. This paper presents a full state linear feedback controller for the steam temperature for a once-through direct steam generation system, featuring a 500 m2 paraboloidal dish concentrator and a mono-tube cavity receiver at the Australian National University. The controller manipulates the feed-water mass flow at the receiver inlet to maintain a predetermined specific enthalpy at the receiver outlet, compensating for variations in direct normal irradiation (DNI) and other ambient conditions. The linear controller features three separate regulation mechanisms: a feedforward law to anticipate changes in DNI; a full state feedback loop that uses a state observer for the receiver and an additional output feedback integrator loop for robustness. Experimental results show that the linear controller can successfully control the temperature of the SG4 receiver, provided that it is adequately tuned.
AB - DSG plants in a once-through configuration convert water into superheated steam suitable for a steam turbine, with a single pass of the fluid through the receiver. The control problem is to manipulate the feed-water mass flow to maintain a desired steam condition (e.g. temperature) under variable solar radiation. This paper presents a full state linear feedback controller for the steam temperature for a once-through direct steam generation system, featuring a 500 m2 paraboloidal dish concentrator and a mono-tube cavity receiver at the Australian National University. The controller manipulates the feed-water mass flow at the receiver inlet to maintain a predetermined specific enthalpy at the receiver outlet, compensating for variations in direct normal irradiation (DNI) and other ambient conditions. The linear controller features three separate regulation mechanisms: a feedforward law to anticipate changes in DNI; a full state feedback loop that uses a state observer for the receiver and an additional output feedback integrator loop for robustness. Experimental results show that the linear controller can successfully control the temperature of the SG4 receiver, provided that it is adequately tuned.
UR - http://www.scopus.com/inward/record.url?scp=84912141212&partnerID=8YFLogxK
U2 - 10.1115/ES2014-6592
DO - 10.1115/ES2014-6592
M3 - Conference contribution
T3 - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
BT - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
PB - Web Portal ASME (American Society of Mechanical Engineers)
T2 - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 30 June 2014 through 2 July 2014
ER -