Functional time series forecasting of extreme values

Han Lin Shang*, Ruofan Xu

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)

    Abstract

    We consider forecasting functional time series of extreme values within a generalized extreme value distribution (GEV). The GEV distribution can be characterized using the three parameters (location, scale, and shape). As a result, the forecasts of the GEV density can be accomplished by forecasting these three latent parameters. Depending on the underlying data structure, some of the three parameters can either be modeled as scalars or functions. We provide two forecasting algorithms to model and forecast these parameters. To assess the forecast uncertainty, we apply a sieve bootstrap method to construct pointwise and simultaneous prediction intervals of the forecasted extreme values. Illustrated by a daily maximum temperature dataset, we demonstrate the advantages of modeling these parameters as functions. Further, the finite-sample performance of our methods is quantified using several Monte Carlo simulated data under a range of scenarios.

    Original languageEnglish
    Pages (from-to)182-199
    Number of pages18
    JournalCommunications in Statistics Case Studies Data Analysis and Applications
    Volume7
    Issue number2
    DOIs
    Publication statusPublished - 2021

    Fingerprint

    Dive into the research topics of 'Functional time series forecasting of extreme values'. Together they form a unique fingerprint.

    Cite this